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Environment Warped Gait Trajectory Optimization for Complex Terrains

Zherong Pan1, Tan Chen2, Xianzhong Fang3, Timothy Bretl4, Xifeng Gao1, Kui Wu1

Abstract—Contact-aware gait trajectory optimization is a
challenging non-convex programming problem, especially for
complex terrain shapes, where prominent numerical algorithms
can fail to find a solution or fall into local minima. To alleviate
this issue, we propose an environment warping technique that
changes the coordinates for decision variables. Given a terrain of
some general shape, our method first generates a locally injective,
as-conformal-as-possible function that maps the ambient space
around the terrain to a warped space. We then formulate the
trajectory optimization in the warped space by remapping all
the decision variables. Our method frees the numerical optimizer
from tuning the trajectories to fit changing terrain shapes,
leading to better numerical conditioning and fewer local minima.
Numerical results show that our method outperforms direct
trajectory optimization in terms of both success rates and quality
of solutions.

Index Terms—Contact-aware Locomotion, Trajectory Opti-
mization, Environment Modeling

I. INTRODUCTION

GAIT and trajectory generation is a core component in
the robot design, planning, and control loop for legged

robots. Recent advances focus on contact-aware trajectory op-
timization, which mostly relies on gradient-based methods [1]
to find feasible and locally optimal motion plans. Starting from
a still pose far from the goal, the state-of-the-art methods [2,
3, 4, 5] in contact-aware trajectory optimization can generate
complex motions to reach the goal pose by simultaneously
searching for robot gaits, contact points, and forces in a joint,
high-dimensional search space over a long horizon. Despite
their ability to scale to high dimensions, local optimizers [1]
can fail to find a solution or fall into sub-optimal minima.

The issue of optimization failure is much more substantial
in a contact-aware setting [2, 3, 4, 5] than in non-contact-
aware cases [6, 7, 8] due to the additional complementary
constraints. Even worse, robot needs to traverse on uneven
terrains, as illustrated in Figure 1. The existence of irregular
terrain shapes can significantly complicate the landscapes
of objective and constraint functions, further decreasing the
chances of finding a solution. Additional techniques, such as
multi-start optimization [9] and stochastic optimization [7],
have been explored to improve the quality of trajectories, but
they are costly to be applied in long-horizon contact-aware
settings.

We propose environment warping, an approach to improve
the robustness of contact-aware trajectory optimization by a
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Fig. 1: We warp a flat terrain, as well as a narrow band neighborhood
(gray) of the ambient space F , to a curved terrain (black). All the
decision variables, including robot torso and contact positions (red),
torso orientations (blue), and contact forces (green), can be pulled
back from A to F via our locally injective function ϕ, leading to our
contact-aware trajectory optimization formulated in F .

change of coordinates. As illustrated in Figure 1, our method
warps the ambient space of a curved terrain A to a warped
space F , mapping the terrain to a flat surface. We then
formulate a novel contact-aware trajectory optimization based
on [10] with all the decision variables pulled back from A
to F . Although a similar idea has been explored in prior
work [11], our method is the first to be applied to contact-
aware planning problems. When we compare the trajectory
optimization baseline [10] formulated in the original space A
and our warped-space F , experiments show that our warped-
space formulation achieves a 13 − 100% higher success rate.
Our technical contributions include: a new representation of
the smooth map, warping ambient space of curved terrains
(Section IV-A); a finite-element-based optimization technique
to generate locally injective terrain warping function (Sec-
tion IV-B); and a warped-space formulation for contact-aware
trajectory optimization (Section IV-C).

II. RELATED WORK

Trajectory optimization can be categorized into contact-
aware and non-contact-aware settings. A non-contact-aware
optimizer searches for sequences of robot gaits [8] or con-
trol signals [6, 7]. It is noteworthy that non-contact-aware
optimizers can also plan motions through contacts via model
predictive control combined with smooth approximate contact
models [12] or stochastic optimizations [7, 13]. However, these
methods suffer from gradient explosion, preventing them from
finding complex motions over a long horizon.

On the other hand, contact-aware trajectory optimization
adopts the augmented joint search space of robot gaits, contact
points, and forces. These methods use explicit constraints to
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enforce the regularity of contacts, i.e., the requirement that
external forces can only appear when the robot touches the
environments [2, 3, 4, 5]. With the augmented formulation,
constraints become differentiable, locally supported, and do
not suffer from ill-conditioned gradients, enabling optimizers
to discover motions with many contact state changes. An
inherent downside of such formulation is a high-dimensional
search space, where only locally optimal solutions can be
found within a tractable computational budget. Modern interior
point optimizers can take hours to find long trajectories of full
body motions [2, 4] even on the GPU [5]. Even worse, opti-
mizers can oftentimes fail to find feasible solutions or converge
to sub-optimal motions, which correspond to robots taking
unnecessarily small steps or performing unstable maneuvers.

Along with this work, there are multiple efforts in improving
the robustness of local trajectory optimizations. Several prior
works [9, 14] propose to warm-start optimizers from well-
conditioned initial guesses. However, none of these meth-
ods can be applied in the contact-aware setting. Recently,
sampling-based motion planner and trajectory optimizer has
been combined in planning contact-aware motions [15, 16],
but their trajectory optimizers assumes fixed contacts. An-
other approach is phase-based optimization [10, 17], which
restricts the solutions to a well-conditioned subspace. These
methods restrict robot end-effectors in prescribed contact mode
sequences, freeing optimizers from handling the difficult com-
plementary constraints. The work most closely related to ours
is [11], which warps the workspace and formulates trajectory
optimization in the parametric space without considering con-
tacts. With marginal overhead, Mainprice et al. [11] showed
that optimizers in a warped space have better conditions and
faster convergence. In comparison to [11], we propose a series
of new techniques allowing the warping techniques to be
applied to the contact-aware setting.

Environment warping belongs to a broader category of
researches on surface and volume parameterization [18, 19,
20]. These methods were originally designed to discretize and
numerically solve partial differential equations or generate
detailed appearances in virtual environments. Recently, they
were rediscovered in the robotic community [11, 21] and used
to parameterize the workspace of motion planning problems.
These methods rely on the parameterization of the infinite am-
bient space via the solution of exterior Laplace equation using
the boundary element method [21]. This technique is not only
time-consuming to compute, but its solution is represented
as a boundary integral that is also singular on the domain
boundary itself. These properties make prior methods [11, 21]
inappropriate for contact-aware trajectories. We tackle these
problems by discretizing the ambient space using the finite
element method with high-order continuous shape functions. A
large body of researches such as [22] have contributed to finite-
element-based surface parameterization. As a key advantage,
finite element methods can deal with a larger variety of
objective functions than the boundary element methods. For
our application, we will show that angle-preserving conformal
warping [18] is better than a smooth warping produced by
solving the Laplace equation [21], which can only be realized
via the finite element method. Additionally, some objectives

can ensure locally or even globally injective mapping func-
tions [22, 23]. In a parallel effort to tackle complex environ-
ments, animators use motion editing [24, 25, 26] to warp a
reference motion to adapt to modified environments. But these
methods are not suitable for robotic applications, since their
generated trajectories do not satisfy the equations of motion.

Riemannian motion policies (RMP) [27, 28] are a series
of research studying the relationship among smooth mani-
folds. Key to these methods is the pushforward and pullback
operators, that bring tangent bundles, functions, and metrics
through smooth maps. Making use of the linearity of tangent
spaces, multiple Riemannian policies are inherently compos-
able. This leads to the follow-up researches on composable and
learning-based RMP [29], which is orthogonal to our research.
We heavily use the pushforward and pullback operators in
formulating our contact-aware trajectory optimizations. Since
we need to handle multiple types of decision variables, we
carefully control the order of continuity of our smooth map
ϕ to ensure all the variables are sufficiently smooth to be
properly handled by gradient-based optimizers. In order to
represent robot orientations in SO(3), we further introduce an
operator projecting a point of the ambient space to its closest
neighbor on SO(3).

III. CONTACT-AWARE TRAJECTORY OPTIMIZATION

Throughout our paper, we use uppercase letters for matri-
ces, functions, and constants, and lowercase letters are for
scalars and vectors. Our method is built off of the phase-
based gait trajectory optimization [10] and we briefly review
their formulation in this section. This method features the
Centroidal Dynamics Model (CDM) and phase-based contact
parameterization.

Ri (a)

(b)

(c)

pi(t)

fi(t)

swing static swing static

Fig. 2: We illustrate some key notions in phased-based gait
trajectory optimization. (a): A simplified box-shaped reachable set
Ri (gray) is identified for each robot end-effector. Each end-effector
has a position sequence (b) and a force sequence (c). The sequences
are divided into alternating static and swing phases and the switching
times (dashed line) are decision variables.

A. Robot Trajectory Representation

A robot is modeled as a torso with orientation trajectory
R(t) and translation trajectory p(t). The robot has a number
of E end-effectors located at pi(t) exerting contact forces
fi(t), where i = 1,⋯,E and t ∈ [0, T ] is the time variable.
The torso position trajectory is parameterized using high-order
splines with control points cp, denoted as p(t) ≜ p(t, cp). The
torso orientation is represented using three Euler angles θ,
which in turn is parameterized using high-order splines with
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control points cR, denoted as R(t) ≜ R(θ(t, cR)). Key to the
phase-based formulation is an alternating parameterization of
pi(t) and fi(t). Each robot contact trajectory is divided into
an alternating sequence of static and swing phases. During the
static phase, pi(t) lies statically on the ground and fi(t) can be
non-zero, while during the swing phase, pi(t) can freely move
above the ground while fi(t) must be zero. As a result, the
position-force complementarity is implicitly encoded without
requiring additional constraints. Such a parameterization can
be realized by two alternating sequences of high-order splines
as illustrated in Figure 2b. Winkler et al. [10] further improves
the flexibility by treating the time spans of each static and
swing phase as additional decision variables, under the con-
straints that all the time spans are positive and sum up to T .
We denote the control points as well as the time spans for the
ith contact point and force sequence as cip and cif , respectively.
As a result, we have pi(t) ≜ pi(t, cip) and fi(t) ≜ fi(t, cif).
We denote c ≜ (cR, cp, cip, cif ) as a concatenation of all the
decision variables.

B. Contact-aware Trajectory Optimization
Our trajectory optimization baseline takes the following

form:

argmin
c

E(c) s.t. (1)

{∀t ∈ Td ∶ mp̈(t) = ∑E
i=1 fi(t) +mg

Iω̇(t) + ω(t) × Iω(t) = R(t)T ∑E
i=1(pi(t) − p(t)) × fi(t)

(2)

{∀t ∈ T
i

static(cip) ∶ zT pi(t, cip) = h(pi(t, cip))
∀t ∈ T i

swing(cip) ∶ zT pi(t, cip) ≥ h(pi(t, cip))
(3)

∀t ∈ Td ∶ R(t)T (pi(t) − p(t)) ∈Ri (4)

∀t ∈ Td ∶ ∥[I − ni(t)ni(t)T ] fi(t)∥ ≤ νni(t)T fi(t), (5)

which handles three types of integrity constraints ensuring
physical, geometric, and force correctness. The physical con-
straints Equation (2) ensure the robot torso complies with
the Newton-Euler’s equation, where I is the inertia tensor
and ω(t) is the angular velocity, both measured at the local
frame of reference. m is the robot torso weight and g is
the gravitational coefficient. Equation (2) is tested at fixed
time intervals denoted as a discrete set Td. Our environment
is modeled as a heightfield h(x, y) ∶ R2 → R, mapping a
horizontal point to its vertical ground height. The geometric
constraints Equation (3) require that robot end-effectors must
make contacts with the heightfield during the static phase.
While during the swing phase, the end-effectors cannot pene-
trate the terrain. Equation (3) are tested at a set of discrete
time instances T istatic and T iswing. Note that, since timing of
phase-changes could be optimized in [10], T istatic and T iswing
are functions of cip. Further, each robot end-effector pi must
be within a reachable set Ri relative to the torso (Figure 2),
which is formulated in Equation (4) and tested at a fixed set
of time instances Td, same as those for Equation (2). Finally,
the force constraints Equation (5) require that contact forces
lie in the frictional cone during each static phase, where ν is
the frictional coefficient and we again use the same test set
Td. n(t) is the normal direction of terrain calculated as:

n(t) ≜ (−∇xh, −∇yh, 1) / ∥(−∇xh, −∇yh, 1)∥ .

Additionally, E(c) could be additional cost functions formu-
lating the control task. Equation (1) is solved by gradient-based
optimizers, which require all the objective and constraint func-
tions to be at least differentiable. As a result, the heightfield
must be sufficiently smooth, which can be achieved by fitting
the heightfield via spline patches as introduced in the following
section.

IV. ENVIRONMENT WARPED TRAJECTORY GENERATION

In differential geometry, the pullback operator maps a
function from one manifold to the other via a smooth map. Our
method could be interpreted as a pullback operator ϕ for the
optimization formulation in Equation (1), from the ambient
space A to a warped space F . We first introduce how the
smooth map ϕ is defined in Section IV-A, IV-B, and then
introduce the pullback operator in Section IV-C.

A. Finite Element Environment Warping Function

Prior work [11] proposes to use an A-space regular grid to
resample the solution of the exterior Laplace equation, which
warps the entire ambient space. Instead, we use a F-space
regular grid to discretize only a narrow band neighborhood
above the terrain h(x, y) as illustrated in Figure 1. We refer
readers to [30, 31] for basics of high-order finite element
methods. We use tri-cubic B-spline basis as our shape function,
so our grid consists of Nx ×Ny ×Nz tri-cubic, B-spline cells
and (Nx + 3) × (Ny + 3) × (Nz + 3) control points. Each
control point is associated with a 3D mapped point denoted
as ψijk, i = 1,⋯,Nx + 3, j = 1,⋯,Ny + 3, k = 1,⋯,Nz + 3
and a shape function Bijk(x) ∶ R3 → R. For any x ∈
[0,Nx] × [0,Ny] × [0,Nz], we can then define our smooth
map ϕ(x) as:

ϕ(x) =
Nx+1
∑
i=1

Ny+1

∑
j=1

Nz+1
∑
k=1

ψijkBijk(x).

We further define the associated Jacobian matrix as J(x) ≜
∇xϕ, which is used to define the pushforward operator. Our
smooth map endows several properties making it suitable for
defining the pushforward and pullback operators in contact-
aware trajectory optimizations. First, ϕ can be efficiently com-
puted since the shape function B(x) is only locally supported
with non-zero values only on a 4 × 4 × 4 neighboring grid.
Second, our shape function and thus ϕ(x) is C2-continuous
over the entire R3. We will show that C2-continuity is just
enough for all the constraints to have well-defined Jacobian
matrices. Third, although we only discretize a narrow band
neighborhood, ϕ(x) is well-defined and differentiable outside
our narrow band. This property is important when used with
infeasible optimization algorithms, which allow solutions to
be temporarily outside the feasible domain. This is the case
with most off-the-shelf optimization algorithms [1].

B. Warping Function Optimization

The finite element method parameterizes the mapping func-
tion using the control points ψijk, which are our decision vari-
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(a) (b) (c) (d)
Fig. 3: We illustrate four optimized terrains (solid gray), with smooth functions ϕ mapping a narrow band area around the terrain (transparent
blue). We set the band thickness to be 5 times that of the robot height at its rest pose. The bottom of ϕ is aligned with the terrain h(x, y)
and illustrated using solid color.

ables. And we define ψijk as the minimizer of the following
integrated energy:

Emap ≜ ∫
[0,Nx]×[0,Ny]×[0,Nz]

ρ(x,ψijk)dv,

where ρ is the energy density function. In practice, evaluating
the above integral for a general, analytic function ρ is in-
tractable and we use Gauss quadrature for an approximation.
Unlike the boundary element method, which can only handle ρ
with known fundamental solutions, the finite element method
allows much more flexibility in choosing ρ. For example, if
we choose ρ as the Dirichlet energy [32], then the Laplace
equation is recovered. Instead, since we need to represent
robot orientations, it is best for ϕ to preserve angles, i.e., the
pushforward operator is closed under SO(3). Smooth maps
with this property are denoted as conformal maps. Although
perfectly conformal maps are not realizable in 3D, we could
use the following energy to make ϕ as conformal as possible,
which was originally proposed in [33]:

ρ(x,ψijk) ≜ ∥J −UV T ∣Σ∣1/3∥2 − µ
3

∑
i=1

log(Σi),

where we denote the SVD decomposition of the Jacobian as:
J = UΣV T and the ith singular value as Σi. The second term
above ensures the Jacobian to have positive singular values
and the smooth map ϕ is locally injective [34], where µ is
a small positive weight of log-barrier functions. We further
need the bottom of our mapped space to be aligned with the
given terrain h(x, y). This is achieved using a terrain matching
objective function:

Ematch ≜ ∫
[0,Nx]×[0,Ny]×{0}

∥ϕ2(x) − h(ϕ0(x), ϕ1(x))∥2ds,

where ϕi(x) is the ith element of ϕ(x). The above integral
is also approximated using Gauss quadrature. Putting things
together, we define:

ψ∗ijk = argmin
ψijk

Emap +Ematch. (6)

We propose two techniques to solve for the optimal ψ∗ijk. If
µ = 0 then the optimization can be solved in an alternating
local-global manner similar to [35], which is summarized
in Algorithm 1. The Algorithm 1 is guaranteed to converge
because the energy is monotonically decreasing over itera-
tions. This method ignores the gradient of UV T ∣Σ∣1/3 and
h(ϕ0(x), ϕ1(x)) with respect to ψijk, leading a quadratic
objective function with a fixed lefthand side. As a result,
the Hessian matrix only needs to be factorized once and

the iterative cost becomes extremely low. Some examples of
optimized maps are illustrated in Figure 3. If µ > 0, then a
full blown Gauss-Newton is used with explicit line search to
ensure J(x) lies in the feasible domain with positive singular
values Σi.

Algorithm 1: Local-Global Optimization of ψijk

1: for iteration k = 1,2,3,⋯ do
2: for each Gauss quadrature sample point x do
3: J∗(x)← UV T ∣Σ∣1/3 ▷ Local
4: for each Gauss quadrature sample point x do
5: h∗(x)← h(ϕ0(x), ϕ1(x)) ▷ Local

6: ψ∗ijk ← argmin
ψijk

⎧⎪⎪⎨⎪⎪⎩
∫ ∥J(x) − J∗(x)∥2dv+
∫ ∥ϕ2(x) − h∗(x)∥2ds

▷ Global

C. Gait Trajectory Optimization in Warped Space

In this section, we use our map ϕ to define pullback
operators for each constraint in Section III. We use ●̄ to denote
variables in the warped space F . The warped-space trajectory
optimization is formulated as follows:

argmin
c̄

E(c̄) c̄ ≜ ( c̄R, c̄p, c̄ip, c̄if ) s.t. (7)

⎧⎪⎪⎨⎪⎪⎩

∀t ∈ T istatic(c̄ip) ∶ zT p̄i(t, c̄ip) = h(p̄i(t, c̄ip))
∀t ∈ T iswing(c̄ip) ∶ zT p̄i(t, c̄ip) ≥ h(p̄i(t, c̄ip))

(8)

∀t ∈ Td ∶ ∥[I − zzT ] f̄i(t, c̄if)∥ ≤ νzT f̄i(t, c̄if) (9)
⎧⎪⎪⎨⎪⎪⎩

∀t ∈ Td ∶ R(θ̄(t, c̄R))TP [J(p̄(t, c̄p))]T

(ϕ(p̄i(t, c̄ip)) − ϕ(p̄(t, c̄p))) ∈Ri
(10)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑i fi = M
∆t2
(p(t) − 2p− + p−−)

∑i(pi(t) − p(t)) × fi(t)
= ρ

∆t2 ∫x∈Ω(2R−x −R−−x) ×R(t)xdv
, (11)

and we explain each constraint below.
a) Warped constraint Equation (3): Corresponding to the

end-effector position sequence pi(t, cip) in A, we introduce
warped-space force sequence p̄i(t, c̄ip) in F . Since the terrain
is mapped to the z = 0 plane and the spline p̄i is linear in
its control points c̄ip, position correctness constraints take the
linear form of Equation (8).

b) Warped constraint Equation (5): We define force se-
quence f̄i(t, c̄if) in tangent space TF(p̄i(t, c̄ip)) corresponding
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to fi(t, cif) in TA(ϕ(p̄i(t, c̄ip))). The force sequence maps to
TA via the pushforward operator:

fi(t) ≜ J(p̄i(t, c̄ip))f̄i(t, c̄if).

Similarly, the normal direction is mapped to TA as:

ni(t) ≜ J(p̄i(t, c̄ip))z/ ∥J(p̄i(t, c̄ip))z∥ .

Plugging these operators into Equation (5) and we derive the
pullback of force correctness constraint. However, we argue
for a more succinct form of constraint when ϕ is made as
conformal as possible. In this case, the Jacobian J(p̄i(t, c̄ip)) is
nearly a scaled rotation matrix: J ≈ UV T ∣Σ∣1/3. If we replace
J with such approximation in Equation (5), we derive the
constraint Equation (9), which is convex because the normal
direction z is a constant and the spline f̄i is linear in c̄if . Such a
constraint can be handled more efficiently by modern optimiz-
ers than the non-convex Equation (5). Although Equation (9)
is not an exact pullback operator since our smooth map is
not perfectly conformal, we found empirically the difference
is rather small as shown in Figure 4.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
(σmax− σmin)/σmax

0

5

10

15

20

#S
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Fig. 4: We plot the relative conformal error over a set of regularly
sampled points on the terrain in Figure 3a, estimated by the relative
difference between the maximal (σmax) and minimal singular value
(σmin) of J . Most sample points has an error of less than 5% and
the average error is 7.8%.

c) Warped constraint Equation (4): Both physics cor-
rectness and reachability constraints involve the robot torso
position p(t) and orientation R(t). For the torso position, we
introduce the sequence p̄(t, c̄p) in F . In order to pushforward
the orientation R, we consider an arbitrary vector v ∈ TF that
is brought to Jv ∈ TA. An orientation R can be considered
as a matrix of three orthogonal vectors, which is brought
to JR under the pushforward operator. However, the matrix
JR ∉ SO(3) in general. Therefore, we introduce an additional
projection operator P . Given any J ∈ R3×3, P(J) maps J to
the nearest element of SO(3) in the following optimal sense:

P(J) ≜ argmin
R∈SO(3)

∥R − J∥2F . (12)

The above optimization has the following properties leading
to the efficient computation of projection and its derivatives:

Corollary IV.1. Suppose the SVD decomposition of matrix J
is J = UΣV T . The projection operator has closed form solu-

tion P = UV T ∣UV T ∣. For any R ∈ SO(3), P(JR) = P(J)R.
Finally, we have a closed form Jacobian of P as follows:

∂P(J)
∂α

≜ ω ×P(J)

ω ≜ U(tr(Σ)I −Σ)−1V T [P(J)T ∂J
∂α
− ∂J
∂α

T

P(J)]×−1,

where α is some arbitrary variable of J and [●]×−1 is the
inverse cross product operator such that [●] ×−1 × = ●.
Proof. The first result is due to [36]. The second result is
immediate because the SVD decomposition of JR is JR =
UΣV TR. The third result is due to [37].

With the projection operator, we define the robot torso
rotation sequence in F as:

R(t) ≜ P [J(p̄(t, c̄p))]R(θ̄(t, c̄R)). (13)

In other words, we first use Euler angles to define the rotation
in F , pushing it forward to some element of TA(ϕ(p̄(t, c̄p)))
and then project it back to SO(3). Note that our smooth map
ϕ is C2-continuous and the rotation R(t) and force fi(t)
already depends on the Jacobian J , so R(t) and fi(t) is
only C1-continuous. Plugging Equation (13) into the reach-
ability constraint Equation (4), we derive its pullback form in
Equation (10), which has well-defined Jacobian. However, the
pullback of physics correctness constraints is more involved.

D. Position-Based Centroid Dynamics Model

In a similar fashion as Equation (10), we could pullback the
Newton-Euler Equation (2). However, such pullback constraint
would require R(t) to be C2-continuous when computing
the constraint Jacobian, which could not be achieved via ϕ
discretized using cubic basis functions. To obtain sufficient
smoothness, one option would be using quartic basis functions,
but this could significantly increase computational overhead
of the smooth map optimization procedure, as well as all
constraint evaluations. Instead, we follow [5] and propose
a Position-based Centroid Dynamics Model (PCDM), which
only requires C1-continuity.

Since the physics constraint is tested at a regular interval
t ∈ Td. We can denote the sampling interval as ∆t and use the
following shorthand notations:

●− = ●(t −∆t) ●−− = ●(t − 2∆t), (14)

where ● is an arbitrary variable. PCDM assume that the
physically correct configuration at time instance t is the
minimizer of the following combined inertial and potential
energy:

R,p = argmin
R∈SO(3),p

−∑
i

fTi pi(t) +
ρ

2∆t2
∫
x∈Ω

∥(Rx + p) − 2(R−x + p−) + (R−−x + p−−)∥2dv,
where Ω is the volume occupied by the robot torso in its
frame of reference. By setting the gradient to be zero in
the tangent bundle of SE(3), we derive the PCDM govern-
ing Equation (11), which only requires R(t), p(t) to be C1-
continuous. The integral in Equation (11) can be evaluated
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Fig. 5: The convergence history of the two methods, local-global method (Algorithm 1) and Newton’s method, for the four results in
Figure 3, where we use the same cost function with µ = 0. The Newton’s method can sometimes converge to better solutions but its iterative
cost is much higher than that of Algorithm 1, requiring matrix factorization during each iteration.

in the same way as the inertia tensor. In summary, the cubic
basis function for the smooth map ϕ is just enough for all the
constraints in Equation (7) to have a well-defined Jacobian.
Some optimizers require the Hessian of Lagrangian function,
which is computed via low-rank approximation.

V. EVALUATIONS

We refer readers to our video for all the animated results.
We implement the baseline optimization (Equation (1)) and
our reformulated optimization (Equation (7)). For fairness of
comparison, we also use PCDM as physics constraints for
the baseline formulation. All experiments are performed in
a simulated environment using the ANYmal robot model.
We extract the largest rectangular reachable set to be used
as Ri and use Knitro [38] as the optimizer backend. We
set the maximal number of iterations to be 200 and the
optimizer terminates early if the maximal constraint violation
is smaller than 10−4 or the relative solution change is smaller
than 10−4 over 5 consecutive iterations. All experiments are
performed on a desktop machine with a 6-core Intel i7-10750H
CPU and 8Gb memory. We use multi-thread to accelerate
the computation of constraints and their Jacobian. We set
the parameters to be T = 10s, ν = 0.75, and ∆t = 0.05s.
All the trajectories, including position, orientation, and force,
are discretized using cubic B-splines. On average over all
examples, a trajectory of 10 seconds can be computed in
around 1 minute.

We first profile the performance of smooth map ϕ opti-
mization (Equation (6)) and compare the two solutions: local-
global (Algorithm 1) and Newton’s approach. As illustrated in
Figure 5, the local-global approach converges much faster than
the Newton’s approach. Although the local-global approach
can generate non-injective maps, we have not observed this
artifact in our four benchmarks of Figure 3. However, we
propose to use the local-global approach first and only revert
to the more costly Newton’s method if injectivity is violated.
For most examples, the smooth map ϕ can be optimized
within 200s. In order to ensure that the robot never leaves
the narrow band ambient space, we set the band thickness to

be 5 times that of the robot height at its rest pose, as illustrated
in Figure 3.

Our first benchmark (Figure 6) uses the rippled terrain
(Figure 3a). We initialize the robot in the center of this
terrain (0,0) and have the robot move to the horizontal point
(r sin θ/2, r cos θ/2) where r is half the size of the terrain.
The target position is added as a hard constraint on the X-
Y plane. We sample θ from 0○ to 360○ at an interval of
15○. For each θ, we run optimization for a maximum of
200 iterations and plot the per-iteration constraint violation in
Figure 8. We denote a trajectory as successful if the maximal
constraint violation is less than 10−4 within 200 iterations.
Under this criterion, our method achieves a success rate of
92%, which is significantly higher than 48% using the baseline
formulation. We further compare the computational overhead
of the two methods in Figure 9. Except for 1 − 2 walking
directions, our method incurs a lower computational overhead
by using fewer iterations to converge. Our second benchmark
(Figure 7) uses the conic terrain (Figure 3b). We keep all other
settings the same except that robots are horizontally initialized
at (−r sin θ/2,−r cos θ/2), so the robot needs to walk over a
longer distance. In this more challenging case, the baseline
formulation achieves a success rate of 0% as compared with
100% using our method.

Our third benchmark (Figure 10a) uses the hilly terrain in
Figure 3c. The slope of the hill in the middle is rather steep.
Therefore, we allow the robot to climb the hill by modeling
its two front legs with suckers, allowing it to apply adhesive
forces by removing two of the frictional cone constraints.
We uniformly sample 15 target positions uphill. The success
rate of our method and the baseline are 100% and 0%,
respectively. Indeed, it is difficult for low-order polynomial
curves to fit the drastically changing terrains, while our method
allows a straight line in the warped space to align with the
environment in the ambient space. We plot the average per-
iteration constraint violation of one trajectory in Figure 11.
Similarly, our fourth benchmark (Figure 10b) uses the terrain
in Figure 3d, which has a deep pit in the middle, with a much
sharper cliff than that of the hill in Figure 3c. We uniformly
sample 15 target positions outside the pit and our method
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(a): Terrain in Figure 3a (b): Terrain in Figure 3a

Fig. 6: An exemplary trajectory of the robot walking on a rippled terrain (Figure 3a), with contact forces in green, using our method (a)
and the baseline (b).

Fig. 7: We computed robot walking along all directions to evaluate
the success rate using terrains in Figure 3b.
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Fig. 8: For the terrain in Figure 3a, we generate trajectories for the
robot to walk in all directions (θ ∈ [0,360] with a sampling interval of
15○). For each optimization, we run a maximum of 200 iterations and
plot the constraint violation of each iteration (radius). We consider a
trajectory successful if the maximal constraint violation is less than
10−4 within 200 iterations. Our method achieves a success rate of
92% as compared with 48% using the baseline.

achieves a success rate of 13%, as compared with 0% using
the baseline. We summarize the success rate of both methods
in Table I.

Terrain Figure 3a Figure 3b Figure 3c Figure 3d

Our Method 92% 100% 100% 13%
Baseline 48% 0% 0% 0%

TABLE I: Success rate of both methods on our 4 benchmarks.

VI. CONCLUSION & LIMITATIONS

We present an environ-
ment warping technique
for contact-aware trajec-
tory optimization of legged
robots on complex terrain
shapes. Our method pulls
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Fig. 9: Computational time for generating a trajectory of 10 seconds
with different walking directions. Most problem instances can be
solved within 60s. Some instances require much higher computational
time, which is clamped in the plot.

(a): Terrain in Figure 3c (b): Terrain in Figure 3d

Fig. 10: (a): Robot climbing up the hill (Figure 3c); (b): robot
climbing out of the pit (Figure 3d), where the two front legs are
capable of applying adhesive forces.

back the objective and constraint functions from the ambient
space back to a warped space while pushing forward force
and rotational variables from the warped space to the ambient
space. As our major limitation, we represent terrains using
a smooth surface, which is presumably the reason for our
method to achieve only a success rate of 13% on the terrain
shown in Figure 3d, which has a discontinuous geometric
shape highlighted in the inset. In the future, we plan to use
a piecewise continuous warping function, allowing finitely
many geometric gaps. As a result, a mixed discrete-continuous
optimizer such as [39] could be used to search for gap-aware
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Fig. 11: The iteration-wise constraint violation of two methods for
a hill-climbing trajectory. The baseline algorithm terminates early at
an infeasible solution.

trajectories. Further, our method cannot support full-body
trajectory generation, because our warping function leads to
undesirable deformations to a rigid robot link. A workaround
for this issue is to use our CDM-based formulation, but derive
conservation bounds on the accelerations to guarantee physics
realizability.
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