
Visual Knitting Machine Programming

VIDYA NARAYANAN∗, Carnegie Mellon University
KUI WU∗, University of Utah
CEM YUKSEL, University of Utah
JAMES MCCANN, Carnegie Mellon University

Augmented Stitch Mesh Yarn Geometry Knitting Program

(a) Input Mesh (b) Time Function (c) Stitch Mesh (d) Edited Pattern (e) Machine Knit Bunny

Fig. 1. Stages of our visual knit programming system: (a) Our system begins with an input mesh; (b) generates a knitting time function; (c)
remeshes the surface to create an augmented stitch mesh; (d) allows the user to interactively edit and add patterns, textures, and colorwork; and (e)
generates instructions for fabrication on an industrial knitting machine. At the core of our interface is the augmented stitch mesh, which associates
yarn geometry, dependency information, and a knitting program with each face.

Industrial knitting machines are commonly used to manufacture complicated
shapes from yarns; however, designing patterns for these machines requires
extensive training. We present the first general visual programming interface
for creating 3D objects with complex surface finishes on industrial knitting
machines. At the core of our interface is a new, augmented, version of the
stitch mesh data structure. The augmented stitch mesh stores low-level
knitting operations per-face and encodes the dependencies between faces
using directed edge labels. Our system can generate knittable augmented
stitch meshes from 3D models, allows users to edit these meshes in a way
that preserves their knittability, and can schedule the execution order and
location of each face for production on a knitting machine. Our system is
general, in that its knittability-preserving editing operations are sufficient to
∗Co-first authors; equal contribution.

Authors’ addresses: Vidya Narayanan, Carnegie Mellon University; Kui Wu, University
of Utah; Cem Yuksel, University of Utah; James McCann, Carnegie Mellon University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2019/7-ART63 $15.00
https://doi.org/10.1145/3306346.3322995

transform between any two machine-knittable stitch patterns with the same
orientation on the same surface. We demonstrate the power and flexibility
of our pipeline by using it to create and knit objects featuring a wide range
of patterns and textures, including intarsia and Fair Isle colorwork; knit and
purl textures; cable patterns; and laces.

CCS Concepts: • Computing methodologies → Mesh geometry mod-
els; • Applied computing→ Computer-aided manufacturing.

Additional Key Words and Phrases: automatic knitting, fabrication, stitch
meshes

ACM Reference Format:
Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual
Knitting Machine Programming. ACM Trans. Graph. 38, 4, Article 63
(July 2019), 13 pages. https://doi.org/10.1145/3306346.3322995

1 INTRODUCTION
Computer-controlled knitting machines are powerful tools for
computer-aided fabrication, and are widely used in the garment
and accessory industries. When properly programmed, they can
turn yarns into soft 3D surfaces in a wide range of shapes, textures,
and colors. Knitting machines create these objects by using a small
vocabulary of operations which manipulate loops on their needle
beds, two long rows of loop storage locations. Once programmed,

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

https://doi.org/10.1145/3306346.3322995
https://doi.org/10.1145/3306346.3322995

63:2 • Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann

objects can be manufactured quickly and with minimal wasted
yarn.
Knitting machine programming is notoriously challenging be-

cause shape, structure, texture, and color effects must all be created
concurrently using a small set of low-level operations. In addition,
these operations must be scheduled to limited needle bed locations
on a knitting machine, and they are conventionally selected with
limited visual and structural feedback.
We demonstrate the first general visual programming interface

for 3Dmachine knitting, which tackles all these challenges. The core
of our system is an augmented stitch mesh data structure, where
each face contains both a visual representation and a specific set of
low-level knitting operations. We couple this representation with
an automatic mesh generator and a set of knittabillity-preserving
editing operations to provide a system that can navigate the space
of all tube-based 3D knitting programs. Together, these innovations
result in the first general visual editor for knitting programs .
The main technical contributions presented in this paper are:
• an augmented stitch mesh data structure, where each face is
associated with a local machine knitting program;
• a scheduling system that assigns needle bed locations and
times to stitch mesh faces in order to automatically fabricate
3D knitting patterns from augmented stitch meshes;
• and an interactive visual design system to edit knitting pro-
grams directly in 3D, while preserving the machine knittabil-
ity.

We provide a brief overview of prior work (Section 2) and related
background on machine knitting (Section 3), then describe the de-
tails of our augmented stitch mesh structure (Section 4). Next, we
describe how our system allows users to generate, edit, and machine-
knit augmented stitch meshes. Particularly, we demonstrate how a
machine-knittable augmented stitch mesh may be created from an
input 3D object (Section 5); how augmented stitch meshes may be
edited in a general and machine-knittability-preserving way (Sec-
tion 6); and how the final mesh faces can be ordered (Section 7.1),
and their loops can be assigned needle locations (Section 7.2) for
machine fabrication. Finally, we present our results (Section 8) and
discuss the limitations of our work and future directions (Section 9),
before we conclude (Section 10).

2 PRIOR WORK
Before we discuss the details of our method, we provide a brief
overview of prior work in the areas of fabric and knit modeling,
simulation, and design.

Machine Knitting. Modeling the yarn-level structure needed for
knit fabric is a complex procedure. Commercial knitting design soft-
ware provides templates of standard designs with limited scope for
editing [Shima Seiki 2011; Soft Byte Ltd. 1999; Stoll 2011]. More
complex or non-standard patterns must be hand-designed at the
stitch level, though there exist guidebooks of advanced techniques
that can assist with this process [Underwood 2009]. Notably, these
traditional design tools work in the construction space of the ma-
chine – requiring users to figure out the construction location and
construction order of stitches at the same time as they determine
stitch types and connectivity.

Meißner and Eberhardt [1998] proposed one of the earliest graph-
ics based approaches for visualization and design of machine knitted
structures. Recently, researchers have expanded this scope by offer-
ing general tube and sheet primitives in the context of a knitting
compiler [McCann et al. 2016]. Since their approach still requires a
designer to place and configure these primitives by hand, Narayanan
et al. [2018] recently proposed an automatic approach knit a wide
variety of 3D surfaces on machine. However, their method focuses
on matching the topology and geometry of the input model and
does not offer any options to edit these patterns for texture or col-
orwork. Popescu et al. described a similar system that works on
topologically-disc-shaped patches [Popescu et al. 2018], which can
later be connected manually. In addition to making feasible knitting
patterns, researchers are also beginning to examine how to create
efficient patterns [Lin et al. 2018], though this work is limited to flat
knitting patterns. We introduce a system to represent and edit ma-
chine knittable structures including their shape, color and textures.
We extend the scheduling algorithm proposed by [Narayanan et al.
2018] to support these details. In contrast to traditional tools, our
system works in the output space of the target design – allowing
designers to focus on what they wish to create instead of how they
should construct it.

Hand Knitting. Relative to machine knitting, hand knitting is
very flexible. Human knitters are dextrous and able to form com-
plex stitches using loops from anywhere in the existing fabricated
item. Thus, designing for human knitters is a substantially different
problem than designing for machine knitting, and while approaches
for the latter can be used for the former, the reverse is not true.

It is known that a 2D surface of any topology can be hand knit [Bel-
castro 2009]. Igarashi et al. [2008a; 2008b] presented a design as-
sistant that semi-automatically creates a knitting pattern from a
3D model by covering the surface with a winding strip and finding
areas where increases or decreases are needed.

Yuksel et al. [2012] introduced stitch meshes, a data structure for
modeling knit structures for visualization and simulation. Recently,
Wu et al. introduced an automatic pipeline to convert arbitrary shape
into labeled quad-dominant mesh stitch meshes [2018] and extended
them for hand knitting by introducing a list of hand-knittable mis-
match faces [2019]. We build on the idea of the stitch mesh, adding
dependency tracking and local machine knitting instructions to each
face. This allows users of our system to edit both mesh topology
and face programs while preserving machine knittability.

Simulation and Rendering. Complementary to fabrication efforts,
yarn-level simulation methods [Kaldor et al. 2008, 2010] can pro-
duce realistic deformations of knitted structures. Recent works have
focused on efficient methods to simulate yarn-level details, includ-
ing combining Lagrangian and Eulerian approaches [Sueda et al.
2011], applying reduced order methods [Cirio et al. 2014, 2015, 2017],
and modelling anisotropic deformations using the material point
method [Jiang et al. 2017]. Leaf et al. [2018] demonstrated interactive
yarn simulation for periodic pattern design using GPU computation.

Researchers have been working on photorealistic knit fabric ren-
dering for over a decade [Groller et al. 1995; Gröller et al. 1996].
Approaches include representing the geometric complexity of knit
structures with volumetric approximations [Chen et al. 2003; Xu

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

Visual Knitting Machine Programming • 63:3

et al. 2001], CT scan data [Zhao et al. 2011], and procedural func-
tion [Zhao et al. 2016a]; and rendering the data with the radiative
transfer framework [Jakob et al. 2010], the SGGX microflake dis-
tribution [Zhao et al. 2016b], and data-driven approaches [Aliaga
et al. 2017; Khungurn et al. 2015]. Generating details on-the-fly has
been used to reduce memory usage [Luan et al. 2017] and achieve
interactive rates [Lopez-Moreno et al. 2015; Wu and Yuksel 2017a,b].
Readers interested in amore extensive surveymay refer to [Schröder
et al. 2012].

Clothing Design. In contrast to constructing fabric from the yarn-
level, most clothing design work in graphics has focused on the
“cut-and-sew” paradigm, where clothing is sewn together from mul-
tiple panels cut from flat fabric; with many contributions in sim-
ulation [Carignan et al. 1992; House and Breen 2000; Volino and
Magnenat-Thalmann 2000; Volino et al. 2009] and interactive and
intuitive interfaces [Decaudin et al. 2006; Mori and Igarashi 2007].
One of the difficulties in cut-and-sew clothing is fitting 3D models,
which is done by placing specific shaping features like darts and
folds [Li et al. 2018; Turquin et al. 2007; Umetani et al. 2011; Wang
2018] or by combining and adjusting patterns in a physically mean-
ingful manner [Bartle et al. 2016]. Recently, data driven approaches
have been used for parsing sewing garments into 3D draped forms
as well as for exploring the multi-modal design space of body shapes,
textures, and 2D patterns [Berthouzoz et al. 2013; Wang et al. 2018].

3 BACKGROUND
Knitting is a technique to produce fabric from
yarn by manipulating loops of yarn to form
stitches. In the inset figure, adjacent stitches
are yarn-wise connected to their left and right
neighbors and loop-wise connected to their
top and bottom neighbors. This yarn-wise and
loop-wise connectivity of stitches gives rise to a grid-like structure
and characteristic knit texture.

Machine Knitting. Industrial knittingmachines are programmable
systems that manipulate loops into knit structures using hundreds
of needles arranged in two parallel beds. Needles receive yarn from
yarn carriers that run between them, and can be actuated to perform
one of three basic instructions:

(1) tuck D N CS : add a loop to needle N using yarn carrier set
CS in the specified direction D.

(2) knit D N CS : add a loop through all the existing loops on
needle N using yarn carriers CS in the specified direction D.
All previously held loops at the location are dropped.

(3) xfer N1 N2 : move all loops on needle N1 to target needle
N2. Needles N1 and N2 must be aligned and on opposite beds.

These operations, along with others to perform machine configura-
tion (bed alignment, stitch sizing) and yarn handling, comprise the
knitout low-level knitting language, which we use for output in our
system. Details of knitout can be found in its specification [McCann
2017], while more information about knitting machines in general
can be found in [Spencer 2001].
Even though there are only three basic instructions, they can

be combined to form a dazzling array of textures, colors, and

shapes [Underwood 2009]. Indeed, industrial knitting machines are
used to fabricate items as diverse as shoes, sweaters, car upholstery,
and glass-fiber reinforcement for composites.

Valid Knitting Programs. While most arbitrary sequences of nee-
dle operations can be executed by a knitting machine, few will
produce results beyond a yarn tangle. This is because operations
depend on previous operations to place loops and yarn carriers
in specific places in order to run smoothly. Specifically, for a knit-
ting program to form a desired set of stitches, it must respect the
yarn-wise and loop-wise dependencies of those stitches.

We formalize this notion of validity with two properties:

Property 1 (Order). All stitches must be constructed in the yarn-
wise order specified by the pattern. All loops that a stitch depends upon
must be constructed before it and must be available on a needle at the
time of constructing the stitch.

Property 2 (Adjacency). All yarn-wise adjacent stitches must be
constructed on adjacent needles.

In other words, a given sequence of stitches is machine knittable
if and only if its associated knitting program can be ordered and
scheduled to machine needles such that the loop(s) and yarn(s) each
stitch depends on are held on adjacent needles at the time of its
construction. In the next section, we introduce a data structure for
knitting representation built with this important notion in mind.

4 AUGMENTED STITCH MESHES
The data structure at the core of our system is the augmented stitch
mesh (Figure 1), a 3D mesh in which each face is labelled with both
yarn topology and machine instructions, and each edge is labelled
with yarn or loop dependency information.

The stitch mesh data structure, introduced by Yuksel et al. [2012],
represents complex yarn topologies as compositions of a few basic
face types which can be connected as long as their edge labels
match–essentially, as a set of generalized Wang tiles [1961]. By
selecting the appropriate vocabulary of face types, stitch meshes
can be used to represent knit, knotted, and woven structures. We
augment this representation in two ways in order to support the
editing of machine knitting programs: first, we add directed edge
labels to track dependency information; second, we associate with
every face type a knitting machine program that can construct the
yarn-level topology on that face.

Directed Edges. The edge labels in our augmented stitch mesh
capture dependencies between faces (Figure 2, left) – loop in edges

Fig. 2. Augmented stitch mesh faces have, left, directed edges to
prevent locally unknittable assembly; and, right, associated knitting
programs.

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

63:4 • Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann

start(N, Y)
in Y
knit + fN Y

end(N, Y)
knit + fN Y
out Y

knit(N, Y)
knit + fN Y

purl(N, Y)
xfer fN bN
knit + bN Y
xfer bN fN

decreaseL(NL , NR , Y)
xfer fNR bNR
xfer bNR fNL
knit + fNL Y

decreaseR(NL , NR , Y)
xfer fNL bNL
xfer bNL fNR
knit + fNR Y turn(N, Y)

tuck + fN Y

increaseR(NL , NR , Y)
knit + fNL Y
tuck - fNR Y

increaseL(NL , NR , Y)
xfer fNL bNL
xfer bNL fNR
tuck - fNL Y
knit + fNR Y

Fig. 3. Basic face types and their associated knitting code fragments. Faces with opposite yarn direction proceed similarly. Dashed lines indicate
divisions between construction passes. For increases, the input loop is always stored on needle fNL . For decreases, the output loop can arrive at
either needle fNL or fNR . This is pseudo-code; the (JavaScript) code used in our system are available in the supplementary material.

indicate that a loop is needed, while loop out edges indicate that
a loop is produced; yarn in and yarn out give similar information
about yarns. Any in edge may only connect to an out edge of the
same type, and visa-versa. Notice that these directed edge labels
induce a directed graph on the faces, which is useful when checking
for dependency cycles.

Face Programs. Each face in our augmented stitch mesh data
structure represents a fragment of a knitting program that operates
on the yarns and loops provided by its in edges in order to produce
the yarns and loops indicated by its out edges (Figure 2, right). That
is, the edge labels provide a type signature – input and output loop
and yarn counts – for a knitting program fragment.

The basic face types provided by our system, along with pseudo-
code for their knitting program fragments, are shown in Figure 3.
Our system makes it easy to extend this list, since the editing oper-
ations it supplies depend on face edge labels, not on the referenced
program.

Knittability. For an augmented stitch mesh to be machine-
knittable, both the ordering property (Property 1) and the adjacency
property (Property 2) must hold. The ordering property is easy to
check – it holds locally by construction, and can be checked globally
with a topological sort (Section 7.1). The adjacency property is
somewhat more subtle, in that it depends on the existence of a valid
schedule among the (exponentially-large) set of possible needle
allocations. Fortunately, previous work demonstrated that the
existence of a valid schedule is a property of the mesh topology
along with an easy-to-check feasibility condition at splits and
merges within the mesh [Narayanan et al. 2018]. The former can
be checked once on mesh import and the latter can be preserved
through UI design.

Therefore, we focus our efforts on maintaining the ordering prop-
erty.

5 STITCH MESH GENERATION
Our pipeline begins by creating a machine-knittable augmented
stitch mesh from a given oriented manifold 3D surface, as illustrated
in Figure 4.

As a first step, the mesh is segmented into tubular regions using
either a user-specified time function (as per [Narayanan et al. 2018])
as an input to the system or by computing the Fiedler vector of
the mesh Laplacian [Zhang et al. 2010]. The user may also edit
boundaries for better alignment (as in [Igarashi et al. 2008a]). Then,
boundaries are discretized based on stitch width such that segments
align one-to-one. Once the starting and ending boundary counts
are computed, each segment is quad meshed based on the stitch
dimensions [Dong et al. 2005].

To maintain boundary lengths while limiting the change in stitch
counts between rows for reliable fabrication, stitch counts are opti-
mized by relaxing integer constraints on the counts and rounding

Fig. 4. Stitch mesh generation: The input mesh is segmented into
tubular regions and remeshed to identify stitch connectivity. Its dual
is extracted and refined to generate an initial stitch mesh.

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

Visual Knitting Machine Programming • 63:5

Y 0(Merge)

Y 0(Split)

Y 1(Turn)

Y 1(Cut)

Y 2(Contract)

Y 2(Extend)

Y 3(Collapse)

Y 3(Expand)

Y 4(Zip ↑)

Y 4(Zip ↓)

S0(DElim⊤)

S0(DIntro⊤)

S1(DSplit)

S1(DJoin)

S2(DZip→)

S2(DZip←)

S3(DElim⊥)

S3(DIntro⊥)

Boundary

Boundary

S4(DElim⊤)

S4(DIntro⊤)

S5(DJoin)

S5(DSplit)

S6(DZip→)

S6(DZip←)

S7(DElim⊥)

S7(DIntro⊥)

S8(DDIntro)

S8(DDElim)

(a) Yarn Operations (b) Shape Operations

(c) Cable Operation (d) Yarn Reversal (e) Type Operations

Fig. 5. Editing Operations: blue indicates yarn-end faces, grey indicates regular faces, orange indicates pentagons, purple indicates short-row
faces, and green indicates cable faces. Green and red arrows indicate yarn direction and loop direction respectively.

the results:

sf = argmin
x

n∑
i
(xi − si)

2

subject to:
2
3
xi−1 ≤ xi ≤

3
2
xi−1

x1 = s1,xn = sn

where sf is the vector of final stitch counts and si is the vector of
initial counts.

The stitch mesh is extracted from the dual graph of this structure
and faces with higher length distortion are refined or merged. This
refinement can generate short-rows – a chain of faces that form a
partial loop. The mesh is sub-divided along its rows to ensure an
even number of short-rows followed by local edits to convert it into
a single helical sequence of faces [Wu et al. 2019]. This ensures
that to begin with, each tubular region can be constructed from a
single yarn and yarn-wise label consistency is maintained. Loop-
wise label consistency is maintained by following the time function
for remeshing. This initial mesh is machine knittable as long as the

input model topology is feasible as proposed by [Narayanan et al.
2018] and requires at most one yarn per tubular region.
From this starting mesh, the user can edit the mesh to refine

topology or change stitch types as described next.

6 STITCH MESH EDITING
Our system provides a suite of editing operations which allow users
to navigate the space of knittable augmented stitch meshes (Fig-
ure 5). These operations all involve replacing some portion of an
augmented stitch mesh while maintaining compatible edge labels.
Edits of this sort can still introduce global dependency cycles (i.e.
violate Property 1), and we will discuss how our system prevents
this at the end of this section. During editing, vertex positions are
updated using projective dynamics [Bouaziz et al. 2014]. From the
ShapeOp library [Deuss et al. 2015], edge-strain constraints are used
to ensure faces retain the approximately correct size and bending
and plane constraints are used to maintain the 3D shape.
Our system supports two classes of editing operations: mesh

editing and data editing. Mesh editing operations change the mesh
structure (face counts or connections) and include yarn operations

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

63:6 • Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Demo of applying Y2 in (a) and Y3 in (b - d) to create a short-row as a Yarn “Zipper” and aligning the pentagon using the Shape “Zipper”
by S5 in (e - g) and S6 in (h).

that deal with yarn start/end faces, shape operations that modify
pentagons (for increasing or decreasing loops), and cable operations
that add/remove cable faces (for reordering loops after construction).
Data editing operations do not change the mesh structure, and
include type operations that change face type and yarn reversal
that reverses yarn direction along a row. Although the stitch mesh
structure might be modified by mesh editing, the genus of the input
surface is not modified by any of the editing operations.

Yarn Operations. We call operations that involve single-yarn-edge
triangles yarn operations (Figure 5a). Merging two yarn-start/end
triangle faces over a loop edge will either form a regular quad,
Y0(Merge), or short-row face to turn the yarn based on the types of
remaining four edges, Y1(Turn). On the other hand, one row can
be broken into two rows by their reverse operations. Removing or
adding pair of yarn-start/end triangles can be used to add or remove
a row, Y2(Contract/Extend). Yarn-start/end triangles are allowed to
move along the loop-wise direction as well as along the yarn-wise
direction (Y3 and Y4).

Shape Operations. Shape operations allow the user to move pen-
tagons along the loop-wise and yarn-wise direction as illustrated in
Figure 5b (S1, S2, S5, and S6). Note that operations S0, S3, S4, and
S7 can remove/add a vertex without causing problems because they
do so at the boundary of the mesh.

Cable Operations. Transposing loops after knitting them create
interesting patterns called cables. Our system supports insertion
and removal (Figure 5c) of cable faces of any length between two
rows of regular stitches. These faces do not have yarn edges, so they
cannot construct new loops, only rearrange them.

Type Operations. These simple editing operations change face
types, for example, swapping a “knit” face for a “purl” face. Our
systemwill use the corresponding face program to generate machine
code during instruction generation.

Yarn Reversal. In addition to these face modifications, our
system also includes an operation for reversing yarn direction
by changing the face types and internal edge labels of an entire
row (Figure 5d). While not strictly necessary, this operation is
much more convenient than removing and re-inserting a yarn
stitch-by-stitch to change its direction.

These edits work together to enable natural dragging-based edits,
where faces aremoved across themesh, locally altering topology. For
example, Figure 6, users can “zipper” in and out partial rows of yarn
by moving yarn start or end faces, and do the same with columns of
loops by moving increase or decrease faces. This gives users access
to both “short-row” and “increase-decrease” shaping techniques
in a very intuitive way. Our dragging-based tools are similar to
singularity editing [Peng and Wonka 2013], but also preserve the
machine knittability.

Preserving Machine Knittability. Though our local edits will never
introduce locally conflicting edge labels, they are not always legal
to apply because they can potentially introduce a dependency cycle
as shown in in Figure 7. When editing, our interface checks the
legality of each operation by attempting a topological sort on the
dependency graph induced by the edge labels; if a directed cycle is
found between a face and itself, then the ordering property has been
violated and the edit is not permitted. This ensures that the ordering
property (Property 1) is preserved. Also, as discussed earlier, none
of our edit operations modify the topology of the input model and
therefore the adjacency property (Property 2) is never violated.

Y0(Merge)

Y3(Expand)

Fig. 7. Examples of edits (shown with dashed edges) that our interface
would prevent because the resulting mesh contains a cyclic dependency
between faces. Arrows show yarnwise dependencies, and loopwise
dependencies (not shown) point from bottom to top. Yarn-end and
yarn-start faces (highlighted in red) form an unknittable structure by
introducing a cyclic dependency.

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

Visual Knitting Machine Programming • 63:7

Generality. We refer to an editing operation that passes the global
ordering check, and thus can be executed, as valid. Importantly,
there is always a sequence of valid editing operations that can be
used to transform one machine-knittable augmented stitch mesh
into another (of the same input topology).

Indeed, we can prove a restricted version of this statement, though
we first need a few lemmata:

Lemma 6.1. Shrinking a row using operations Y2(Contract) and
Y3(Collapse) is always valid.

Proof. Removing nodes and edges from a directed graph will
not create a cycle. □

Lemma 6.2. If the edit f is valid on machine-knittable mesh A, its
inverse operation f −1 is valid on f (A).

Proof. f −1(f (A)) = A is machine-knittable by hypothesis, so it
passes the ordering check and f −1 is valid on f (A). □

Lemma 6.3. Splitting faces by S1(DSplit), S3(DElim⊥),
S4(DElim⊤), and S5(DSplit) are always valid.

Proof. Duplicating an edge in a directed graph will never create
a cycle. □

Lemma 6.4. Any pentagon face can be removed from the stitch mesh
while maintaining machine-knittability.

Proof. As shown in Figure 8, by repeatedly applying operation
S5(DSplit), the decreasing face can be moved to the top bound-
ary and the stitch mesh remains valid (Lemma 6.2). If the penta-
gon is trapped by a yarn-end face, the yarn-end can be moved
(Lemma 6.1), the pentagon can be moved to the boundary. Then, op-
eration S4(DElim⊤) can be used to remove a decrease pentagon. Sim-
ilarly, repeatedly applying operation S1(DSplit) and S3(DElim⊥)
can be used for eliminating increase pentagons. □

(a) (b) (c)

(d) (e) (f)

Fig. 8. Removing a pentagon while preserving knittability: (a
- b), move the yarn-end face above the pentagon; (c - e), move the
pentagon to the boundary; (f), remove the pentagon.

Theorem 6.5. The editing operations supplied by our interface are
sufficient to connect the space of all machine-knittable augmented
stitch mesh tubes.

Proof. First, we show that any valid stitch mesh tube can be
turned into a trivial pattern. Any pentagon face can be edited out
by Lemma 6.4 without breaking validity. Operation Y1(Cut) can be
used to remove any yarn-turn triangles. Finally, all yarn-start trian-
gles can be moved closer to their yarn-end by repeatedly applying
operation Y2(Contract) and Y3(Collapse) (Lemma 6.1). The result
is a stitch mesh consisting only of a ring of edges and no faces.

Finally, these edges can be collapsed to a ring with just two edges
by applyingY2(Extend) andY3(Expand) to fill the ring with a single
of quads, followed by S4(DIntro⊥) and S0(DElim⊤) to reduce the
number of quads to one, followed by Y2(Contract) to remove the
yarn.

Let f1, f2, · · · , fn be the sequence of n operations to turn a stitch
mesh F into the trivial pattern. Let д1,д2, · · · ,дm be the sequence
ofm operations to turn a stitch mesh G into the trivial pattern. By
Lemma 6.3, д−11 ◦ д

−1
2 ◦ · · · ◦ д

−1
m is valid on the trivial pattern, so

д−11 ◦ · · · ◦ д
−1
m ◦ fn ◦ · · · f1 is valid on F and results in G. □

We believe that a similar, more general, proof can be conducted for
non-tubelike meshes by using a variant of the same construction,
but some care must be taken to keep the “trivial configuration”
compatible with the underlying topology (since no edits allow, e.g.,
the creation of a figure-8 of empty edges).

7 INSTRUCTION GENERATION
In order to convert an augmented stitch mesh into a list of machine
instructions for knitting, our system must determine the order in
which the faces should be created and assign machine locations to
all loops produced and consumed by faces.

7.1 Face Ordering
Given that our interface preserves the ordering property (Prop-
erty 1), our system will always be able to find some dependency-
obeying order of the faces. Our system selects an ordering on the
faces using a topological sort with a modified queue that always
returns the next face along the currently-being-traced yarn or –
failing that – the least-recently-used yarn among possible ready
faces (Algorithm 1). New yarn-start faces are only knit if no other
ready faces exist.
We chose this particular ordering heuristic because it avoids

switching yarns and favors finishing in-action yarns before start-
ing new yarns, while still knitting every in-action yarn reasonably
frequently. Switching yarns can slow down the knitting machine,
having too many active yarns can lead to time wasted by the ma-
chine moving carriers out of the way, and loops held for a long time
on the machine bed can occasionally be worn out and broken.

Results of our tracing algorithm on several tricky cases are shown
in Figure 9. Note that, in our system, users are also allowed to
manually add dependencies between faces in order to, e.g., steer
the heuristic away from non-optimal orderings (Figure 9b), or to
prevent two logical yarns they intend to assign to the same physical
yarn from being active at the same time. Once the faces have been

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

63:8 • Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann

ALGORITHM 1: Face Ordering

Q ← all boundary yarn-in faces;
while Q is not empty do

s ← the next stitch from Q ;
Set s as knitted;
for all top and outgoing edge e do

Mark e as ready;
sn ← neighboring stitch over e ;
if sn is ready then

Enqueue sn into Q ;
end

end
end
if at least one edge is not ready then

Return untraceable. // Invalid edit: the directed graph has
// at least one cyclic dependency.

end

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9. Examples of face ordering: (a) a simple spiral; (b) a case
where the heuristic’s arbitrary choice of starting face leads to a non-
optimal ordering (if green and purple had been started first, fewer yarn
changes would be needed); (c) short-rows embedded in a spiral require
yarn carrier switches; (d) nested short rows; (e) yarns that depend
on each-other; (f) two helicies that depend on each other, requiring
multiple yarn carrier switches; and (g), two tubes merging.

ordered, our interface allows the user to map each logical yarn to a
physical yarn ID that is passed on along with the face sequences to
the scheduling system.

7.2 Scheduling
Once the knitting order has been determined by tracing, our system
must schedule (assign) storage locations for loops. Our scheduler is
based on the open-source implementation released by Narayanan et
al. [2018], which we have modified to support general faces instead
of a fixed menu of stitch types.

Our scheduler turns each face into one more or fragments – low-
level items that, together, produce and consume the same number of
loops as a face – and breaks the sequence of fragments into logical
passes. These fragments serve as a placeholder for the faces, and
allow our system to decouple scheduling for storage locations from
the operations performed on those locations. In addition to the knit-
ting program, the configuration data associated with each face type
indicates if the face requires its own pass and if it has any custom

pass-level programs associated with it. Passes are constructed based
on the following conditions:
• All fragments in a pass have the same direction (clockwise or
counter-clockwise).
• A pass does not have more than a limited (4) number of
“increase” or “decrease” shaping operations that changes its
width.
• All fragments in a pass must have the same basic type – faces
with different basic types force a pass break.

A pass a is said to depend on a pass b if pass a uses the loops
produced by pass b (i.e., it reads from storage locations last written
to by pass b). Each pass may be dependent on zero or more passes.
If a pass depends on exactly one previous pass, it is referred to as a
regular pass and the rest are critical.
Once passes are constructed, scheduling proceeds through the

pipeline of [Narayanan et al. 2018]’s scheduler: An upward planar
embedding is identified by enumerating all embeddings of the criti-
cal passes. Based on the shape of these critical passes, intermediate
passes are filled in by assigning a shape that minimizes transfer oper-
ations. Finally, needles are assigned to all loops using the computed
shapes, and instructions can be generated.
During instruction generation, where [Narayanan et al. 2018]’s

scheduler only ran “knit” operations, our scheduler needs to respect
the programs stored with each knitting face. To execute a pass, our
scheduler emits instructions as follows: First, any pre-pass programs
associated with the basic stitch type of the fragments are invoked
with the storage locations of the previous and current passes. Next,
transfer operations (planned by the method of [McCann et al. 2016])
are executed to align locations. Finally, each face included in the
pass is generated by calling the program associated with the face
on the storage locations associated with that face’s fragments.

Pre-pass programs can be used for custom transfer planning and
for reordering existing loops in a user defined manner and are
invoked by passing the locations computed by the transfer planner
for all the stitches active on the bed and for the stitches participating
in the pass with the function signature:

function pre_pass(from , to, pass_from , pass_to)

The face program associated with the stitch mesh face is invoked
by passing the yarn direction determined during tracing, the needle
allocations determined by the scheduler, and the ID(s) of the current
yarn(s). Instead of invoking a single function, the face programs are
divided into a preamble, main execution and a postamble that share
the same signature:

function face_*(dirs , bns , carrier)

These three functions allow for coarse instruction re-ordering,
which we will discuss further after introducing an non-trivial face
program:

Purl Faces. A purl (i.e., a back knit) constructs the stitch on the
opposite bed. This simple alteration generates a backward facing
loop which appears structurally different from a forward facing
loop. A combination of front and back stitches can give rise to a
wide variety of patterns (Figure 10, columns 7-9). The face program
for a purl first transfers the loop held in the storage location to the

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

Visual Knitting Machine Programming • 63:9

Inc/dec Short-row H-Slit V-Slit Lace Cable Rib Knit-Purl Garter Plating Intarsia Fair Isle

(a) Shaping (b) Texturing (c) Colorwork

Fig. 10. A sampler of knitting techniques available in our system: (a), increase/decrease shaping, short-row shaping, a horizontal slit using
bind-off and cast-on, and a vertical slit using C-knitting; (b), lace with ordered increases and decreases, cables, rib (alternating columns of knits
and purls), a complex knit-purl pattern, and garter (alternating rows of knits and purls); and (c), colorwork with the plating, intarsia, and Fair Isle
methods.

fairIsle1(N, Y)
knit + fN Y1

fairIsle2(N, Y)
knit + fN Y2

plating1(N, Y)
knit + fN Y1 Y2

plating2(N, Y)
knit + fN Y2 Y1

Fig. 11. Additional face types created for Fair Isle and plating colorwork. We use Y1 and Y2 to denote the first and second elements of the yarn
array, Y, respectively.

holding position on the other bed, knits on this new storage location
and transfers the loop back. No pass level programs are necessary.

function purl_pre(dirs , bns , carrier){

xfer(bns[0], opposite(bns [0]));
}

function purl_main(dirs , bns , carrier){

knit(dirs[0], bns[0], carrier);

}

function purl_post(dirs , bns , carrier) {

xfer(opp(bns [0]), bns [0]);

}

On a single system machine like the one used to fabricate our
examples, knit and transfer instructions must be performed in sepa-
rate carriage movements; this means that a row of N purl stitches
– each of which requires an xfer, knit, xfer instruction chain –
takes 3N carriage movements to fabricate if all the instructions are
in the “main” function, but only 3 carriage movements if they are
distributed across “pre”, “main”, and “post” functions.

8 RESULTS
We have used our pipeline to create a wide range of objects, which
we discuss in this section. All results were knit on a Shima Seiki
SWG091N2 industrial knitting machine with 15 needles per inch;
the SWG*N2 series are basic v-bed machines typically used for hat,
glove, and accessory production. All examples were knit from a
2-ply acrylic yarn (Tamm Petit). With this yarn and machine, a knit
stitch is 2.88mm wide and 1.75mm tall; so we used this to set the

Fig. 12. A sock pattern can be easily edited by adding color and ribs.

face sizes in our interface. Knitout code for all our results is included
in the supplementary material.

Basic techniques. Thanks to the generality of the augmented stitch
mesh structure, our system can be used to program a wide variety of
common knitting techniques. A sampler of the techniques our sys-
tem supports is presented in Figure 10. Of course, further techniques
can be added by defining more face types.

Colorwork. Our system supports three common styles of knitting
with multiple colors. Intarsia colorwork involves knitting different
sections of the object with yarns of different colors. This is easy to
achieve with our basic stitch types, but is relatively inflexible. In
Fair Isle colorwork, yarns of different colors run along the inside of
the pattern, and knit stitches are made out of whichever color the

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

63:10 • Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann

Fig. 13. A knit skyline decorating a cylinder by picking plating face
types from the image (top right)

Fig. 14. Inside-out view of colorwork patterns: left, Intarsia patterns
are created by modifying yarn paths; middle, plating uses two colors
for every stitch creating a double sided pattern; right, Fair Isle patterns
have a distinctive look on the reverse side due to “floating” yarns not
used in stitches.

designer wants to be shown. We implemented this in our system
using faces that pass multiple yarns along their yarn edges but knit
with only one of them (Figure 11, left). Figure 12 shows the addition
of ribs and Fair Isle colorwork in a basic sock pattern. Manually
editing the face types of the initial mesh took around 60 minutes
for this pattern. Finally, in plating colorwork, two yarns are used in
every stitch, with one running slightly in front of the other in order
to make it appear on the front of the stitch. This has the advantage
of making a reversible pattern, with the downside of some loss of
contrast. This, again, was simple to implement in our system with
special plating face types (Figure 11, right). The two-sided decorative
item showing a skyline in Figure 13 was created using plating and a
texture map to guide face selection. Figure 14 shows the inside of
the basic colorwork samples to highlight their differences.

Adding detail. Our system can be used to add fine-scale detail to
automatically-generated patterns. Functional and decorative knit
and purl textures as well as cable patterns can be easily created
by switching face types. We created a hand warmer, Figure 15,
from a tube by introducing a vertical slit using modified (tuck-
less) short-row turn faces – a technique known as C knitting – and
decorating it with ribs and cable faces. Starting from the tube, these

Fig. 15. A hand-warmer designed and edited in our system.

Ours [Narayanan et al. 2018]

Fig. 16. The Stanford bunny with ribs on the body and garter pattern
on the ears. Textures created by knits and purls generates a distinct
look in comparison to the image from the supplementary material
in [Narayanan et al. 2018] shown on the right.

edits took less than 15 minutes to finish. The finished product has
a significantly more interesting surface than could be produced
by previous work on high-level design for knitting machines (e.g.,
Figure 14 in [McCann et al. 2016]).
We also used our system to add surface texture to a classic com-

puter graphics model (Figures 1, 16), producing a much more inter-
esting surface appearance than was possible in previous systems.
Editing the texture involved editing face types throughout the pat-
tern and took around 60-90 minutes. Our system incorporates basic
block-level pattern specification tools for tiling patterns. In general,
introducing more mid-level patterning tools would further reduce
editing time.
Switching yarn types can be used to not only introduce color

but also to vary yarn properties. A popular choice is using con-
ductive yarns for creating soft sensors or embedding functional
electronics [Ou et al. 2019; Perner-Wilson et al. 2011]. In Figure 17,
our system was used to easily add conductive yarn “rails” to carry
current to LEDs in a cap.

Shaping adjustment. Professionally-designed knitting programs
often feature carefully aligned increases and decreases, while current
automatic generation approaches place them somewhat sporadically

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

Visual Knitting Machine Programming • 63:11

Fig. 17. Conductive yarn (cyan faces) can be integrated into the body
of the object for incorporating electronics.

– this produces higher shape fidelity, but can appear messy. Our
system’s editing tools makes it easy to reposition shaping features,
as can be seen in the sweater example in Figure 18.

Improving robustness. Narayanan et al. [2018] reported that in
their fully automatic stitch generation system, patterns could oc-
casionally fail to properly knit owing to suboptimal schedules or
extreme shaping. In our system, such meshes can be edited to avoid
these situations. For example, the sweater pattern for the bear had
a large number of concentrated decreases that caused the resulting
pattern to fail. Our editing tool allows those decreases to be stag-
gered across rows to produce a similar but robust pattern (Figure 19).
These edits were performed in under 15 minutes.

Complex Results. Beginning from the same input mesh of a
sweater, variations can be quickly created by editing the pattern
using our system (Figure 20). By introducing paired increases and
decreases with specific stacking orders, lace can be created. By
stamping a simple pattern over the body of the sweater, Fair Isle
style colorwork and details can be added. By directly modifying
yarn path using the edit operations Intarsia style colorwork can
be created. Starting from the initial mesh, each pattern required
around 20 minutes of manual editing for generating the variations.

By using a combination of our automatic remeshing tool, editing
tools, and scheduling system, novel three dimensionally shaped
seamless knit objects can be designed and fabricated in an intuitive
way (Figure 21).

9 LIMITATIONS AND FUTURE DIRECTIONS
In this paper, we have introduced a flexible and useful visual editor
for machine knitting programs. However, there remain areas for
improvement in our system.

In our system, remeshing runs before faces types are selected, so
it must assume all faces are the same, generic, size. In practice, not
only can face programs modify the machine’s stitch size settings,
but faces such as cables or combinations of adjacent knits and purls
can introduce desirable but pronounced local deformation [Knittel
et al. 2015]. This means that editing can change the shape of the
object in ways that the initial remeshing did not account for. In
the future, this could be addressed by including some coarse local

stitch sizing information when doing the initial remeshing, or by
adding real time simulation into the design pipeline to provide clear
feedback on deformations. Indeed, incorporating predictive yarn
simulation and rendering would greatly improve the overall user
experience.

By design, none of our editing operations can introduce a surface
topology change. Introducing this class of edits with knittability
guarantees would require quickly verifying that the mesh retains
an upward planar embedding, which is hard [Garg and Tamassia
2001]; however, incremental re-verification approaches may make
this tractible for interactive editing.

An implementation limitation that is worth pointing out involves
balancing faces participating in splits and merges so that a valid
layout exists (Property 6 in [Narayanan et al. 2018]). Although easy
to detect, our system does not implicitly maintain balance and relies
on the user to ensure that shaping edits on the splitting/merging
cycles are symmetric. Similarly, our current implementation allows
mapping logical yarns to two (or more) physical yarns to support
plating and Fair Isle colorwork; however, it does not allow faces
that merge or split logical yarns. Supporting such faces should not
require any major algorithmic changes.

Fig. 18. By aligning shaping edits using our system (right), a more
traditional appearance can be created.

Fig. 19. Clustered decreases in one row (top) were distributed to im-
prove the robustness of the sweater pattern (bottom). Notice the holes
under the sleeves in the top example.

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

63:12 • Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann

Fig. 20. Multiple variations – including lace (center) and colorwork
(intarsia stripes left, Fair Isle right) – on the same base pattern can be
easily introduced.

Our system remains agnostic to machine specifications such as
choice of yarn carrier and yarn carrier position. However, when
multiple yarn carriers are active, their exact position and relative
motion can potentially introduce yarn tangling. A possible extension
to our system’s instruction generation phase would detect these
machine configurations and trigger special-case logic to avoid them,
e.g., by adding extra dependencies between stitches or providing
scheduling hints.
Our scheduler can only perform resource allocation for tubular

surfaces (and flat surfaces that can be viewed as a part of a tube); in
part, this is because it depends on having a specific arrangement of
free needles to allow it to re-arrange held loops. Therefore, it cannot
handle techniques that require specific global layouts of stitches
(e.g., fiber inlay), or that occupy needles in a way that prevent
flexible racking adjustments (e.g., complex full-gauge flat-knitting
patterns). We believe that, in the future, additional constraints can
be introduced into the scheduling process to handle these cases,
though more user intervention may be required to produce valid
schedules.
Our system makes use of an automatic transfer planning algo-

rithm that can perform substantially worse than hand-designed
solutions for the same loop movements [Lin et al. 2018]. This is
acceptable for prototyping, but may be a problem in manufacturing.
Better instruction generation through improved planning and sched-
uling algorithms – essentially, the work of building better compilers
for machine knitting – remains an interesting open problem.
Finally, our system shows that the augmented stitch mesh is

useful for representing and editing machine knittable structures.
However, it is a research prototype. Performing usability testing
and refinement, especially around mid-level editing tools, is an
interesting avenue for future research.

10 CONCLUSION
In this paper, we demonstrated a new visual programming tool for
computer-controlled knitting machines. The core of our approach
is an augmented stitch mesh data structure which associates each

face in a mesh with machine knitting instructions and maintains
dependency information between the faces. Our system allows users
to automatically create a machine-knittable augmented stitch mesh
from a 3D model, edit this augmented stitch mesh while preserv-
ing machine-knittability, and transform the mesh into a knitting
program for machine fabrication.

Knit programmers are still doing the same thing they were eighty
years ago. Though the media has changed – from cam cylinders
to card chains to paper tape to floppy disks to flash drives and ftp
servers – programmers still explicitly tell the machine what to do
with each needle on each carriage pass. In contrast, our system al-
lows a user to manipulate output structures, describing exactly what
the machine should make. This shift – from the how of fabrication
to the what of the finished product – is empowering and delightful.
This is the knitting design tool we have always wanted, and we

are exceptionally pleased to have finally created it.

ACKNOWLEDGMENTS
We thank Lea Albaugh and Justin Macey for their support on this
project. The bunny model is provided by the Stanford Computer
Graphics Laboratory. The sock model (product:1354042) by Flindigo
is provided by Turbosquid. KuiWu is supported in part by University
of Utah Graduate Research Fellowship.

REFERENCES
Carlos Aliaga, Carlos Castillo, Diego Gutierrez, Miguel A. Otaduy, Jorge Lopez-Moreno,

and Adrian Jarabo. 2017. An Appearance Model for Textile Fibers. Computer
Graphics Forum 36, 4 (2017), 35–45.

Aric Bartle, Alla Sheffer, Vladimir G. Kim, Danny M. Kaufman, Nicholas Vining, and Flo-
raine Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment
Editing. ACM Trans. Graph. 35, 4 (Jul 2016), 1–11.

Sarah-Marie Belcastro. 2009. Every Topological Surface Can Be Knit: A Proof. Journal
of Mathematics and the Arts 3, 2 (2009), 67–83.

Floraine Berthouzoz, Akash Garg, Danny M Kaufman, Eitan Grinspun, and Maneesh
Agrawala. 2013. Parsing Sewing Patterns Into 3D Garments. ACM Trans. Graph.
(TOG) 32, 4 (2013), 85.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages.

Fig. 21. Stuffed animals with accessories designed in our system. The
bear (left) is wearing a custom beanie with slits for ears and amatching
sweater. The cat (right) is wearing a cap with knit and purl patterns
and a sweater with cable work and ribbed sleeves.

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

Visual Knitting Machine Programming • 63:13

Michel Carignan, Ying Yang, Nadia Magnenat Thalmann, and Daniel Thalmann. 1992.
Dressing Animated Synthetic Actors With Complex Deformable Clothes. ACM
SIGGRAPH’92 (1992), 99–104.

Yanyun Chen, S. Lin, Hua Zhong, Ying-Qing Xu, Baining Guo, and Heung-Yeung
Shum. 2003. Realistic rendering and animation of knitwear. IEEE Transactions on
Visualization and Computer Graphics 9, 1 (Jan 2003), 43–55.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-
level Simulation of Woven Cloth. ACM Trans. Graph. 33, 6, Article 207 (Nov. 2014),
11 pages.

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A. Otaduy. 2015. Efficient Simulation of
Knitted Cloth Using Persistent Contacts. In Proceedings of the 14th ACM SIGGRAPH
/ Eurographics Symposium on Computer Animation (SCA ’15). ACM, 55–61.

G. Cirio, J. Lopez-Moreno, and M. A. Otaduy. 2017. Yarn-Level Cloth Simulation
with Sliding Persistent Contacts. IEEE Transactions on Visualization and Computer
Graphics 23, 2 (Feb 2017), 1152–1162.

Phillipe Decaudin, Dan Julius, Jamie Wither, Laurence Boissieux, Alla Sheffer, and
Marie-Paule Cani. 2006. Virtual Garments: A Fully Geometric Approach for Clothing
Design. CG Forum (Eurographics) 25, 3 (2006), 625–634.

Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker, and
Mark Pauly. 2015. ShapeOp—A Robust and Extensible Geometric Modelling Paradigm.
Springer International Publishing, Cham, 505–515.

Shen Dong, Scott Kircher, and Michael Garland. 2005. Harmonic Functions for Quadri-
lateral Remeshing of Arbitrary Manifolds. Computer Aided Geometric Design 22, 5
(2005), 392–423.

Ashim Garg and Roberto Tamassia. 2001. On the Computational Complexity of Upward
and Rectilinear Planarity Testing. SIAM J. Comput. 31, 2 (2001), 601–625.

E. Groller, R. T. Rau, and W. Strasser. 1995. Modeling and visualization of knitwear.
IEEE Transactions on Visualization and Computer Graphics 1, 4 (Dec 1995), 302–310.

Eduard Gröller, René T Rau, and Wolfgang Straßer. 1996. Modeling Textiles as Three
Dimensional Textures. In Rendering Techniques’ 96. Springer, 205–214.

Donald House and David Breen. 2000. Cloth modeling and animation. AK Peters/CRC
Press.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008a. Knitting a 3D Model.
Computer Graphics Forum 27, 7, 1737–1743.

Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. 2008b. Knitty: 3D Modeling of
Knitted Animals with a Production Assistant Interface. In Eurographics.

Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner.
2010. A Radiative Transfer Framework for Rendering Materials with Anisotropic
Structure. ACM Trans. Graph. 29, 4, Article 53 (2010), 13 pages.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic Elastoplasticity
for Cloth, Knit and Hair Frictional Contact. ACM Trans. Graph. 36, 4, Article 152
(July 2017), 14 pages.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating Knitted
Cloth at the Yarn Level. ACM Trans. Graph. (SIGGRAPH’08) 27, 3 (2008), 65.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient Yarn-based
Cloth with Adaptive Contact Linearization. ACM Trans. Graph. (SIGGRAPH’10) 29,
4 (2010), 105.

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1, Article 1 (2015), 26 pages.

Chelsea Knittel, Diana Nicholas, Reva Street, Caroline Schauer, and Genevieve Dion.
2015. Self-Folding Textiles through Manipulation of Knit Stitch Architecture. Fibers
3, 4 (Dec 2015), 575–587.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner.
2018. Interactive Design of Yarn-Level Cloth Patterns. ACM Trans. Graph. (Proceed-
ings of SIGGRAPH Asia 2018) 37, 6 (11 2018).

Minchen Li, Alla Sheffer, Eitan Grinspun, and Nicholas Vining. 2018. FoldSketch:
Enriching Garments with Physically Reproducible Folds. ACM Trans. Graph. 37, 4
(2018).

Jenny Lin, Vidya Narayanan, and James McCann. 2018. Efficient Transfer Planning
for Flat Knitting. In Proceedings of the 2Nd ACM Symposium on Computational
Fabrication (SCF ’18). ACM, New York, NY, USA, Article 1, 7 pages.

Jorge Lopez-Moreno, David Miraut, Gabriel Cirio, and Miguel A. Otaduy. 2015. Sparse
GPU Voxelization of Yarn-Level Cloth. Computer Graphics Forum (2015), 1–13.

Fujun Luan, Shuang Zhao, and Kavita Bala. 2017. Fiber-Level On-the-Fly Procedural
Textiles. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 123–135.

James McCann. 2017. The “Knitout” (.k) File Format. [Online]. Available from: https:
//textiles-lab.github.io/knitout/knitout.html.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow,Wojciech Matusik, Jennifer
Mankoff, and Jessica Hodgins. 2016. A Compiler for 3D Machine Knitting. ACM
Trans. Graph. 35, 4, Article 49 (July 2016), 49:1–49:11 pages.

Michael Meißner and Bernd Eberhardt. 1998. The art of knitted fabrics, realistic &
physically based modelling of knitted patterns. In Computer Graphics Forum, Vol. 17.
Wiley Online Library, 355–362.

Yuki Mori and Takeo Igarashi. 2007. Plushie: An Interactive Design System for Plush
Toys. ACM Trans. Graph. (SIGGRAPH’07) 26, 3 (2007), 45.

Vidya Narayanan, Lea Albaugh, Jessica Hodgins, Stelian Coros, and James McCann.
2018. Automatic Machine Knitting of 3D Meshes. ACM Trans. Graph. 37, 3, Article
35 (Aug. 2018), 15 pages.

Jifei Ou, Daniel Oran, Don Derek Haddad, Joseph Paradiso, and Hiroshi Ishii. 2019.
SensorKnit: Architecting Textile Sensors with Machine Knitting. 3D Printing and
Additive Manufacturing 6, 1 (2019), 1–11.

Chi-Han Peng and PeterWonka. 2013. Connectivity Editing for Quad-dominant Meshes.
In Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry
Processing (SGP ’13). Eurographics Association, 43–52.

Hannah Perner-Wilson, Leah Buechley, and Mika Satomi. 2011. Handcrafting Textile
Interfaces from a Kit-of-no-parts. In Proceedings of the Fifth International Conference
on Tangible, Embedded, and Embodied Interaction (TEI ’11). ACM, 61–68.

Mariana Popescu, Matthias Rippmann, Tom Van Mele, and Philippe Block. 2018. Auto-
mated Generation of Knit Patterns for Non-developable Surfaces. In Humanizing
Digital Reality, De Rycke K. et al. (Ed.). Springer, Singapore.

Kai Schröder, Shuang Zhao, and Arno Zinke. 2012. Recent Advances in Physically-based
Appearance Modeling of Cloth. In SIGGRAPH Asia 2012 Courses (SA ’12). ACM, New
York, NY, USA, Article 12, 52 pages.

Shima Seiki. 2011. SDS-ONE Apex3. [Online]. Available from: http://www.shimaseiki.
com/product/design/sdsone_apex/flat/.

Soft Byte Ltd. 1999. Designaknit. [Online]. Available from: https://www.softbyte.co.uk/
designaknit.htm.

David J Spencer. 2001. Knitting technology: a comprehensive handbook and practical
guide. Vol. 16. CRC press.

Stoll. 2011. M1Plus pattern software. [Online]. Available from: http://www.stoll.com/
stoll_software_solutions_en_4/pattern_software_m1plus/3_1.

Shinjiro Sueda, Garrett L. Jones, David I. W. Levin, and Dinesh K. Pai. 2011. Large-scale
Dynamic Simulation of Highly Constrained Strands. In ACM SIGGRAPH 2011 Papers
(SIGGRAPH ’11). ACM, New York, NY, USA, Article 39, 10 pages.

Emmanuel Turquin, Jamie Wither, Laurence Boissieux, Marie-Paule Cani, and John
Hughes. 2007. A Sketch-based Interface for Clothing Virtual Characters. IEEE Comp.
Graph. and Applications 27, 1 (2007), 72–81.

Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan Grinspun. 2011.
Sensitive Couture for Interactive Garment Editing and Modeling. ACM Trans. Graph.
(SIGGRAPH’11) 30, 4 (2011), 90.

Jenny Underwood. 2009. The design of 3D shape knitted preforms. Ph.D. Dissertation.
Fashion and Textiles, RMIT University.

Pascal Volino and Nadia Magnenat-Thalmann. 2000. Virtual Clothing: Theory and
Practice. Springer.

Pascal Volino, NadiaMagnenat-Thalmann, and Francois Faure. 2009. A Simple Approach
to Nonlinear Tensile Stiffness for Accurate Cloth Simulation. ACM Trans. Graph. 28,
4 (2009), 105.

Hao Wang. 1961. Proving Theorems by Pattern Recognition II. Bell System Technical
Journal 40 (1961), 1–42.

HuaminWang. 2018. Rule-free Sewing PatternAdjustmentwith Precision and Efficiency.
ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.

Tuanfeng Y. Wang, Duygu Ceylan, Jovan Popović, and Niloy J. Mitra. 2018. Learning
a Shared Shape Space for Multimodal Garment Design. ACM Trans. Graph. 37, 6,
Article 203, 13 pages.

Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch
Meshing. ACM Trans. Graph. (Proceedings of SIGGRAPH 2018) 37, 4, Article 130 (jul
2018), 14 pages.

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable Stitch Meshes. ACM Trans.
Graph. 38, 1, Article 10 (Jan. 2019), 13 pages.

Kui Wu and Cem Yuksel. 2017a. Real-time Cloth Rendering with Fiber-level Detail.
IEEE Transactions on Visualization and Computer Graphics PP, 99 (2017), 1–1.

Kui Wu and Cem Yuksel. 2017b. Real-time Fiber-level Cloth Rendering. In ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games (I3D 2017). ACM, New
York, NY, USA, 8.

Ying-Qing Xu, Yanyun Chen, Stephen Lin, Hua Zhong, Enhua Wu, Baining Guo, and
Heung-Yeung Shum. 2001. Photorealistic Rendering of Knitwear Using the Lumislice.
In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). ACM, New York, NY, USA, 391–398.

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
Meshes for Modeling Knitted Clothing with Yarn-level Detail. ACM Trans. Graph.
(Proceedings of SIGGRAPH 2012) 31, 3, Article 37 (2012), 12 pages.

Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. 2010. Spectral Mesh Processing. In
Computer graphics forum, Vol. 29. Wiley Online Library, 1865–1894.

Shuang Zhao, Wenzel Jakob, Steve Marschner, and Kavita Bala. 2011. Building Volu-
metric Appearance Models of Fabric Using Micro CT Imaging. ACM Trans. Graph.
30, 4, Article 44 (2011), 10 pages.

Shuang Zhao, Fujun Luan, and Kavita Bala. 2016a. Fitting Procedural Yarn Models for
Realistic Cloth Rendering. ACM Trans. Graph. 35, 4, Article 51 (2016), 11 pages.

Shuang Zhao, Lifan Wu, Frédo Durand, and Ravi Ramamoorthi. 2016b. Downsampling
Scattering Parameters for Rendering Anisotropic Media. ACM Trans. Graph. 35, 6
(2016).

ACM Trans. Graph., Vol. 38, No. 4, Article 63. Publication date: July 2019.

https://textiles-lab.github.io/knitout/knitout.html
https://textiles-lab.github.io/knitout/knitout.html
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
https://www.softbyte.co.uk/designaknit.htm
https://www.softbyte.co.uk/designaknit.htm
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1

	Abstract
	1 Introduction
	2 Prior Work
	3 Background
	4 Augmented Stitch Meshes
	5 Stitch Mesh Generation
	6 Stitch Mesh Editing
	7 Instruction Generation
	7.1 Face Ordering
	7.2 Scheduling

	8 Results
	9 Limitations and Future Directions
	10 Conclusion
	Acknowledgments
	References

