Pacific Graphics 2025/ M. Christie, N. Pietroni, and Y.-S. Wang

Conference Paper

Fast Multi-Body Coupling for Underwater Interactions

T. Gao'?®, X. Chen!®, X Li'®, W. Li3

,B. Chen!®, 7. Pan*®, K. Wu*

and M. Chu!

1 Peking University, China
2 Tsinghua University, China
3 Shanghai Jiao Tong University, China
* LIGHTSPEED, USA

Figure 1: An illustration of underwater grasping. Top: Naive control strategy designed for fluidless environments leads to a failed grasp,
resulting in the fluid flow generated by the gripper pushes the target object away. Bottom: Fine-tuned trajectory achieves a successful grasp
by taking fluid-mediated interactions into account.

Abstract

Simulating multi-rigid-body interactions in underwater environments is crucial for various downstream applications, such
as robotic navigation, manipulation, and locomotion. However, existing approaches either rely on computationally expensive
volumetric fluid-rigid simulations or focus solely on single-body dynamics. In this work, we introduce a fast framework for
simulating multi-rigid-body coupling in underwater environments by extending the added mass paradigm to capture global
interactions in incompressible, irrotational fluids. Our method solves a Boundary Integral Equation (BIE) for the potential flow
field, from which we derive the governing equation of motion for multiple underwater rigid bodies using a variational principle.
We evaluate our method across a range of underwater tasks, including object gripping and swimming. Compared to state-of-
the-art volumetric fluid solvers, our approach consistently reproduces similar behaviors while achieving up to 13X speedup.
The example source code is available at https://github.com/guesss2022/fastMBCUI.

CCS Concepts
* Computing methodologies — Physical simulation;

1. Introduction

Simulating underwater rigid body dynamics is critical for a
wide range of applications, including physics-based anima-
tion [TGTL11], robotic locomotion and manipulation [LBH*22,
XZX*23, WMS*23], and the modeling of bio-inspired underwa-
ter soft robots [MDZ*21, MWL*19]. These downstream tasks
typically depend on sample-intensive algorithms such as model-
predictive control and reinforcement learning, which place high
demands on the efficiency of the underlying simulator. However,
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achieving both physical fidelity and computational efficiency for
two-way coupled fluid and rigid bodies remains a significant chal-
lenge for existing simulation techniques.

On one hand, existing volumetric methods for fluid-rigid body
two-way coupling rely on discretizing the fluid domain using
grids [BBB07, LLDL21], particles [LXY*23], or hybrid Eule-
rian-Lagrangian representations [HFG™18]. However, accurately
capturing fluid dynamics with these discretizations requires a
high number of degrees of freedom, making them both memory-
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intensive and computationally inefficient. In many cases, they in-
volve solving large coupled systems for both fluid and rigid body
velocities, with computational costs that scale superlinearly with
the discretization resolution. On the other hand, to reduce compu-
tational costs, recent works [WP12, GSP*23] have proposed using
added mass models to approximate the influence of the surrounding
fluid on submerged rigid bodies through an additional generalized
mass matrix. These methods significantly improve computational
efficiency by avoiding explicitly solving for the volumetric fluid
flow field. However, a major limitation is that the added mass ma-
trix must be precomputed, which limits these methods to single
rigid-body scenarios. As a result, fluid-mediated interactions be-
tween multiple rigid bodies are largely neglected, an omission that
can lead to physically implausible behaviors or even failure in tasks
such as robotic motion planning.

To achieve a balance between computational efficiency and
physical accuracy, we introduce a fast framework for simulating
multi-rigid-body coupling in underwater environments by extend-
ing the added mass paradigm to capture global interactions in in-
compressible, irrotational fluids. Unlike conventional added mass
methods that rely on pose-invariant mass matrices and ignore inter-
body coupling, our framework solves the incompressible, irrota-
tional fluid velocity field at each timestep via a Boundary Integral
Equation (BIE), enabling accurate multi-body interaction model-
ing. At the same time, our method inherits the key advantage of the
added mass approach, avoiding expensive volumetric discretization
of the fluid domain. Leveraging the computed potential field, we
derive a coupled added mass model and formulate the resulting un-
derwater dynamics using a variational approach grounded in La-
grangian mechanics. This leads to a physically consistent model
that captures fluid-induced momentum exchange across multiple
rigid bodies. To further accelerate the global solve in BIE, we
adapt recent advances in variational preconditioning [CSD24] to
our framework. The integration of this fast preconditioner sig-
nificantly improves simulation performance in multi-body scenar-
ios, even in the presence of complex geometries. Our framework
bridges the gap between theory and practice for surface-only sim-
ulation of multi underwater rigid bodies, and our contributions can
be summarized as follows:

e A numerical scheme for simulating multiple underwater rigid
bodies using BIE.

e An accelerated differentiable BIE solver for underwater simula-
tion using the variational preconditioner [CSD24].

We evaluate our framework across a variety of underwater sce-
narios involving multiple interacting rigid bodies. Compared to a
baseline volumetric solver based on Lattice Boltzmann Method
(LBM) [LLDL21], our method captures qualitatively similar multi-
body fluid interaction effects that are entirely absent in prior single-
body added mass models, while achieving a 13x speedup in run-
time performance. We also demonstrate typical robotic scenarios,
including swimming and grasping, where fluid-mediated interac-
tions between rigid bodies critically influence the outcomes. These
results highlight the effectiveness and efficiency of our approach.

2. Related Work

We review related techniques on the numerical solutions of partial
differential equations for fluid dynamics.

Volumetric Discretization. Significant efforts have been made
over the past decades to strike the optimal balance between effi-
cacy and accuracy of fluid simulations. The prominent methods
used in the graphics community discretize the volume of the fluid
body in grid [BBB07,LLDL21], particle [ACAT13], or hybrid rep-
resentation [ZB05,HFG*18). Although these methods lead to full-
featured simulators that capture all the details throughout the fluid
body, they often come with a high computational cost that scales
super-linearly with the resolution. Based on the volumetric dis-
cretization, a series of two-way solid-fluid coupling techniques has
been developed. The two-way coupling technique for grid-based
methods [BBB07] requires solving a coupled global linear sys-
tem at each timestep to enforce incompressibility and solid-fluid
boundary conditions. The coupling techniques for particle-based
methods [AIA*12, ACAT13] exchange momentum between parti-
cles and solid so it does not involve linear system solvers. How-
ever, the timestep sizes for particle-based methods are typically
much smaller, which again leads to a high computational cost.
Recently, two-way coupling techniques for LBM [LLDL21] have
been proven to capture fine details with a lower computational over-
head. Even through, LBM still need to discretize the whole fluid
simulation domain, leading to a much higher memory and compu-
tational overhead than ours.

Boundary Discretization. To avoid the high cost of volumetric
discretization, various methods have been proposed to lower the
cost by reducing from volumetric to boundary-based discretiza-
tion. These techniques are based on the observation that, when
the fluid is incompressible and irrotational, its velocity field cor-
responds to the solution of a Laplace equation, which can be found
by solving a BIE. In [DHB*16], such assumption is taken to simu-
late free-surface flow using a surface-only discretization, but their
method does not consider two-way solid-fluid coupling. WeiSmann
and Pinkall [WP12] show that the impact of irrotational fluid on
a single rigid body can be precomputed as an added mass ma-
trix. The formulation proposed in [KMRMHOS5] extends the added
mass method to account for multiple rigid bodies, but did not an-
alyze the computational efficiency of a practical implementation.
In [GNS*12], the merits of boundary and volumetric discretiza-
tion are combined. Compared with the aforementioned techniques,
our focus is on the practical computational tractability and efficacy
of a general, boundary-only solid-fluid coupling techniques. It is
known [CSD24, DHB*16, SHW 19, SBH22] that solving the BIE
involves a dense linear system that couples all boundary elements,
which is not necessarily faster than existing volumetric methods.
Fortunately, the matrix-vector multiplication can be accelerated us-
ing algorithms such as the Fast Multipole Method (FMM) [YBZ04]
or Hierarchical matrices (H-matrices) [BGHO3], due to the special
property of matrix entries. In addition, this dense linear system can
be solved using iterative algorithms [SS86, Not00O]. Recently, Chen
et al. [CSD24] show that iterative algorithms can be significantly
accelerated by using multilevel preconditioners.

Simplified Fluid Models. There exists other heuristic models
that deliver plausible fluid animations, while being partially or even
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non-physics-based. In [YHKO7], for example, wave equations are
used to model minor interruptions to a large open water space, and
empirical force models are used for solid-fluid coupling. Follow-
up works use the more accurate shallow water equations [CM10]
and nonlinear wave equations [JSMF*18], but the solid-fluid cou-
pling is again based on empirical force models. In [OKRC10], a
force model is developed to animate underwater cloth motions,
where the key idea is to use a so-called history-laden drag to model
the history-dependent influences from the fluid body. It has been
shown in various works [GSP*23, SPG*24, PM18] that drag force
is a dominant part of solid-fluid interaction, and a heuristic local
drag force model can deliver plausible solid-fluid coupling mo-
tions. While such a simple and efficient force model enables a
range of downstream robotic applications, such as controller op-
timization for underwater locomotion [JLH*21,PM18, MWL*19],
its inability to account for coupling between multiple rigid bod-
ies significantly limits its applicability in more complex scenar-
ios. Another important class of simplified fluid models is the panel
method. Similar to our method, the panel method considers irro-
tational flow fields and uses boundary elements to approximate
the flow potential. Variants of the panel method can also incor-
porate vortex panels or particles to satisfy circulation require-
ments [Eri90, BSC14, Car18, SSA*20, LSAM22]. However, these
methods are primarily applied in the field of aerodynamic simu-
lations, simulating the wake flow around aircraft wings, and fo-
cusing on the flow field rather than simulating the motion of solid
objects within it. Therefore, while these methods offer higher ac-
curacy for specific engineering scenarios, it is non-trivial to extend
these methods to handle multiple coupled rigid bodies.

3. Simulation Formulation and Acceleration Framework

In this section, we propose a fast and physically consistent frame-
work for simulating multiple rigid bodies interacting due to an in-
compressible, irrotational fluid in an unbounded domain. Such a
fluid, where the velocity field equals the negative gradient of a
scalar potential (hence called “potential flow”), represents the min-
imum total kinetic energy configuration among all divergence-free
velocity fields satisfying the boundary conditions [WP12]. This as-
sumption of minimum total kinetic energy, combined with velocity-
matching boundary conditions, leads to a unique solution of the
potential field and thus the velocity field.

In this section, we will begin by representing the fluid velocity
field as a linear function of the generalized velocities of the rigid
body system. We then formulate the kinetic energy of the potential
flow as a function of the rigid-body system’s coordinates and ve-
locities. This allows the flow energy to be treated as an additional
component of the kinetic energy of the rigid body system during
simulation, allowing us to derive the equation of motion using La-
grangian mechanics. In practice, we solve for the fluid potential
field using the method of fundamental solution by placing “point
potential sources” inside the rigid body to approximate the external
potential field. The strengths of these sources are then determined
by solving the BIEs derived from velocity-matching boundary con-
ditions. Unfortunately, in the multi-body setting, the fluid-added
kinetic energy induces a mass-matrix that is changing over frames,
unlike the constant matrix used by [WP12] when only a single rigid
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body is involved. Therefore, we need to solve the BIE in every
frame, which becomes a computational bottleneck. At the end of
this section, we will discuss our method to alleviate the computa-
tional burden by using the recently proposed variational precondi-
tioner [CSD24].

3.1. Variational Formulation of Multi-Body Dynamics

We begin with a multi-rigid-body Lagrangian, which we later aug-
ment with fluid inertia. Each body i has a 6D configuration, i.e., the
translation T; € R? and rotation R; € SO(3). To simplify the formu-
lation while avoiding singularities in SO(3), we adopt a local repa-
rameterization strategy using a minimal 3D rotation vector 0; € R,
such that the configuration becomes q; = (T;,0;) and its local rota-
tion is described by the Rodrigues formula R;(6;) = exp([8;] x )R},
where R} denotes the nominal rotation about which the local chart
is centered. The matrix [e]x is the skew-symmetric cross-product
matrix associated with a vector. To ensure the validity of such pa-
rameterization, we always set the nominal rotation as the current
state. This treatment is also known as differential rotation, and we
refer readers to [RSCO25] for more details. With such reparame-
terization, the rigid body’s kinematic configuration can be repre-
sented as a vector q and the velocity vector is represented as (,
without requiring additional constraints. It is well-known that for
such compact representation, the dynamic behavior of the system
is uniquely determined by the Euler-Lagrange equation, applied on
the following Lagrangian function [SD06]:

£(a.4) = 54" M(@)a - V(q), 1)

where the first term models the kinetic energy, with M(q) being
the generalized mass matrix, and the second term V(q) is a user-
defined potential energy. Applying the Euler-Lagrange equation
then yields the following equation of motion:

19¢"M(q)q _ 9V(q) IM(q)q
2 Jaq Jq Jaq

Our local chart parameterization is valid because the system state
change is small over a single timestep, so the state after a timestep
stays within the local chart that parameterizes the rigid body state
after one timetsep. Specifically, we first solve for { via:

1[104"M(q)q  9V(q) IM(q)q q
2 Jaq Jaq Jaq

We then time integrate the velocity and configuration as:

=M(q)§ +

q. @

G+ M(q) 3)

Qi Qi+ @A, @i gt @A, Ry exp([0])R7. (4)
Finally, we reparameterize by setting RY < R; and 6; < 0. From
the above update rules, we can immediately see that @; is the
discrete-time angular velocity of the ith rigid body. We can also
derive the continuous-time angular velocity from our parameteri-
zation, using the results in [GY 15] to derive:

%Ri(ei) = o] < R;(6;)
()
o = R;(6,)0,6] + (1—Ri(6:))[61] x .

[16:]]%
with ®; being the continuous-time angular velocity of the ith rigid
body in the world frame. We further define the corresponding
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velocity in the body-fixed reference frame using an overbar as
T, = R,‘(@,‘)TTi and ©; = R,‘(G,’)T(O,'.

3.2. Added Mass for a Single Underwater Rigid Body

In order to extend the rigid-body Lagrangian in Eq. 1 to include
fluid inertia, we adopt the classical Kirchhoff’s method [Lam?24]
to express the fluid’s kinetic energy, originally an integral over the
infinite domain, in terms of the rigid body’s finite variables. In this
way, we account for the influence of fluid with an “added mass”
term My, so that M(q) = M, + M/ and the total Lagrangian still
depend only on q and q.

Considering the single rigid body with index i, Eq. 2 reduces
to the classical Newton-Euler equation, and we have the following
kinetic energy of the rigid body X, in the reference frame:

L/.1 T, m;l
’C’:E(Tz‘ mf)Mg(@f) Mm-:< i I,-)' (6)

1

Here [ is the 3 x 3 identity matrix, m; and I; € R3*3 are the mass

and inertia tensor in reference-frame, respectively, and M,,; € ROX6
is the ith rigid body’s generalized mass matrix. We follow Kirch-
hoff’s method and consider the impact of an incompressible, irro-
tational fluid in the ambient space. By the Helmholtz-Hodge de-
composition (see e.g. [STW24]), we can see that the velocity field
of such fluid can be written as the negative gradient of a potential
field ¢, i.e., —V¢. Since there is only a single rigid body, we can
solve for the potential fluid via the following Laplace equation in
the reference frame:

o(x)=0 ~ xlf=00
-0(x)"Vox) =m(x) [0, xx+T;] x€9Q; , (7
Aq)(x) =0 X € —5,‘

where Q; C R? is the space taken by the ith rigid body, —€; is
the complement, and n;(x) is the outward normal of the ith rigid
body at x, all in world space. The first and second equations de-
fine the boundary condition of the Laplace equation, where the first
equation requires the potential to vanish at infinity, while the sec-
ond equation requires the fluid velocity to match the rigid body
velocity at the common boundary. Similarly to velocity variables,
we can define the corresponding variable in the reference frame
as Q; = RlT(Qi —T;) and m;(x) = R,Tni(Rix +T;). In our Laplace
equation, the first equation is the boundary condition at infinity, the
second equation requires the fluid velocity to match that of the ith
rigid body, and the third equation requires the velocity field to be
incompressible. We can then derive the corresponding kinetic en-
ergy of the fluid body K¢ by the following volume integral:

Krla.a) =5 [ |IVolPax
=P :
=0 [, V-0V

__PF )
_ 2/a§i¢v¢ ds

:g/aaq)[@ x x+Tj] - ds.

®

In the second equality above, we use the following identity V -

(0V) = Vo - Vo + 0Ad = || V0||>, where we use our third con-
dition in Eq. 7 to yield A¢ = 0. The third equality above is derived
using the divergence theorem. Finally, we use our boundary condi-
tion of ¢ to derive the fourth equality. Since ¢ is linear in the rigid
body’s velocity T; and @; in its reference frame, we can see that f
is a quadratic form in the velocity as well, leading to the succinct
formula:

Kr(aa) =5 (] o )My (;) : ©
where My ; is the fluid’s added mass matrix to the ith rigid body.
Our system is closed by combining the two kinetic terms in Eq. 6
and Eq. 8:

1
54" M(@Q)a=Kr(a.0) +K4(a.0)- (10)

For a single underwater rigid body, we note that Eq. 7 endows the
same problem data in the reference frame of the rigid body, thus
My ; can be made invariant to the pose q in the reference frame,
allowing it to be precomputed via a proper discretization of Eq. 7
and thereby enabling efficient simulation [WP12].

3.3. Fluid-Mediated Multi-Body Coupling

Our next goal is to account for more than one rigid body by deriv-
ing the associated kinetic energy. Without considering the fluid, the
kinetic energy is the accumulation of all the rigid bodies:

1 . T
Krla.@) =5 X (77 a,.T)Mr.,-(;{). an

For computational efficacy, authors of [WP12] proposed to accu-
mulate the reference-frame added mass term and define the coupled
kinetic energy as:

1 R R T;
EqTM(q)q: EZi,(TiT ®! ) (M, +My ) (@) . (12

However, although the above computation is efficient, it ignores the
fluid-mediated interactions between different rigid bodies, which
could play a significant role for large bodies or bodies in close prox-
imity. Indeed, when more than one rigid bodies exist, the boundary
condition in Eq. 7 takes a different form at every timestep. We thus
have to solve for the potential field in the world frame every time,
via the following Laplace equation:

o(x) =0 [Ix|| = o0
—n;(x,q)T Vo(x) = mi(x,q)7 [0y xx+Ti] x€9Q(q)Vi , (13)
Ad(x) =0 X € —U; Qi(q)

where the key difference lies in the use of ®; and T; in the world
frame instead of ®; and T; in the reference frame. Applying the
divergence theorem, and we derive the expression for the fluid’s
kinetic energy as in Eq. 8 but in the world frame:

Ks(q,q) = gz/mmmi x x+T;] - ds. (14)

Again, we see that K is a quadratic form in the concatenated ve-
locity over all rigid bodies, which could be written as:

e =3 (17 oM@ (). a9
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where M¢(q) is the pose-dependent fluid-added mass matrix that
strongly couples the velocities over all the rigid bodies, with T and
o being the concatenated world-space velocity. As compared with
Eq. 9, Eq. 15 couples all the rigid bodies together, where My is a
dense matrix with all non-zero entries in the general case. In partic-
ular, the off-diagonal blocks correspond to the velocity-level cou-
pling between two different rigid bodies. The presence and varia-
tions of these terms results in momentum transfer between the bod-
ies, thereby approximating their hydrodynamic interactions.

3.4. Boundary Discretization

In this section, we propose an efficient scheme to compute the po-
tential field and the associated fluid-added mass matrix by solving
a BIE in the least squares sense. Specifically, we represent d€2; us-
ing a triangle mesh with x;; being the world-space center of the jth
face of the ith rigid body. We follow [WP12,CSD24] and discretize
¢ using the Method of Fundamental Solution (MFS). Specifically,
we introduce the following 3D fundamental solution of Eq. 13:

1
MR T
centered at some source point y, which automatically satisfies the
Laplace equation, except for the singularity x =y, and the bound-
ary condition at infinity. To avoid the singularity and satisfy the
boundary condition at the surface of all rigid bodies, we define the
potential field by the following linear combination:

q)(X) = ZZG,‘j‘b(X, X,’j —Ili(X,'j)e). (17)
L

(16)

Specifically, we introduce one source term for each triangular face
of the rigid body surface, which is weighted by the unknown coef-
ficient 0;j, and we assume the final potential field is defined by the
accumulation of all the weighted potential source terms. Unfortu-
nately, it is well-known that the function & has a singularity atx =y
where @ = co. To avoid singularity, we slightly move the source
point within the rigid body along the normal direction n;(x;;) by a
small offset e. To nail down the exact potential field value, we only
need to determine the unknown weights a;;. We can solve for all
o;j by requiring the boundary condition in Eq. 13 to be satisfied at
the center of each rigid body’s surface triangle. This can be done by
requiring the second line of Eq. 13 to be satisfied at every surface
triangle center, denoted as x;;. By plugging x = x;;, we derive the
following dense linear system, which can be solved for all o;:

- m(Xgr) - V(X X5 — mi(Xj)e) -+ a;j | =

K} (q)a=b(q) = | nyp(xp)[op x x +To] |- (18)

Plugging in the solution o into the kinetic energy K in Eq. 15, we
derive the discrete fluid kinetic energy as follows:

Ks(a.4) = £b(@ DK (@) [KY (@] b@). (9
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where the matrix K is defined similarly to Kfv, with the kl,ijth
entry being ®(xy;,X;; —n;(x;;)e) and D is the diagonal matrix with
the ijth diagonal entry being the jth face area on the ith rigid body.
Since Eq. 19 is again a quadratic form in q, equation 11 still ap-
plies, and thus we have completed the derivation of our space-time
discretized governing equation by combining Eqs. 3, 4, 5, 11, and
19. A brute-force algorithm for computing matrix-vector products
with Ky, K]Y, and solving the linear system can be quite costly
as the size of these matrices scales with the number of triangular
faces on the discrete boundary of all rigid bodies. In the next sec-
tion, we discuss convenient and efficient implementations of these
operators.

3.5. Efficient Computation Scheme

It can be quite involved to derive all the terms required to evaluate
Eq. 3 by hand. More importantly, the brute-force computation of
matrices Ky, Kfv-, and their inverse can be quite costly, since they
are dense matrices with a size proportional to the number of trian-
gles for discretizing the rigid body surfaces. To mitigate such a high
cost and avoid the involved derivation, we propose to use the auto-
matic differentiation tool [KMKM?21], with a customized operator
for the matrix-vector product with the matrix [Kfv}_l that scales

with the number of triangles. For evaluating [Kfv]flb, we adopt
the iterative method to solve the dense linear system. Since the left-
hand side is not symmetric positive definite in general, we need to
use the more costly iterative solvers such as GMRES [SS86]. How-
ever, our experiments show that it is practically faster to form a
linear square linear system and solve for:

(KT T )] <5, o)

for which we could use the conjugate gradient solver with faster
iterations. To further accelerate the solver, we adopt the multi-level
preconditioner [CSD24], which forms a hierarchy of sparse linear
systems, each of which involve a series of small dense systems that
can be solved in parallel. Finally, we note that Eq. 3 requires the
evaluation of:

IKY ()] 'b
% =~ [K (@) 5~ Kf (@] 'b. @D

for which we can implement a faster scheme as well. Specifically,
the multiplication with [K]Y (q)] " can be evaluated using PCG.

9K} ()

In summary, the workflow of our algorithm is illustrated in Alg. 1
and Fig. 2, where matrix F builds b from general velocity v = q by
b=Fv,and A = [Kfv (q)]~'F. The time derivative of My is com-
puted through automatic differentiation, which offers better accu-
racy despite more computation overhead.

4. Results

All experiments are conducted on a system equipped with an 11th
Gen Intel Core i7-11800H CPU, 16GB RAM, and an NVIDIA
GeForce RTX 3060 GPU (6GB VRAM). Our method is imple-
mented in PyTorch, leveraging its automatic differentiation capa-
bilities to compute differential terms in dynamic equations. To ac-
celerate linear solves, we develop custom Python operators in C++
and CUDA. We adopt Pinocchio [CSB*19] for articulated body
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Algorithm 1: Fast Multi-Body Underwater Simulation

Input : Initial configuration qg, initial velocity vq
Time step Az, total simulation time 77
Fluid density p, rigid body meshes {V',F'}¥_,
Output: Trajectories q(r), v(z) fort € [0,T]
Load rigid body models;
q < (qop, V<V,
for each rigid bodyi=1to N do
i’ + compute_normal(V',F');
gl = Vl — eﬁi ;
end
D + compute_area({V'}Y |, F'});
for k=010 T /At do
for each rigid body i =1to N do
R't',Q « forward_kinematics(q);
// Qp is the kinematic Jacobian
ViR -V 4t
SRS+

n « R -0';

// Source points

Cl compute_face_centers (Vi , F );
Cl— C —t;

end

F « RHS_by_kinematics({C.},{n'},Q,);

KjY + single_layer_gradient({C'},{S'},{n'}) ;
// gradient of single layer
potential matrix in Eq.18

A+ MinvF(KJY7F); // use custom operator

K « single_layer_potential( {C},{S'});

K¢, My < assemble_fluid_energy(D,F,A, K¢, p) ;
// Eq.19

M, < compute_rigid_mass_matrix(q);

f, < mea(q,v,0); // Rigid body forces by
Recursive Newton-Euler Algorithm

M f < compute changing rate of My;

frp < Vs —Myv; // Fluid-induced
forces

Teontrol <— compute_control_inputs(q,v); // Query
robot controller for joint torques

a%(Mf‘l’Mf)_l(fbf7fh+'ccomrol) > // Eq.3
V < v+ aAt;
q < integrate(q,vAt) ; // Eq.4

end

computations and use PyBullet for contact handling [CB21]. The
timestep size is set to 0.01s for all experiments. We provide all rel-
evant statistics in table 1.

Comparison with [LWP*23]. We first compare our method
against a state-of-the-art Home-LBM [LWP*23], which requires
discretizing the entire simulation domain of volumetric fluid. To
ensure a fair comparison, we augment our model with an approx-
imated viscous effect by introducing localized linear drag forces,
following the approach of [GSP*23]. The drag exerted on an area

Rigid body discretization
& Source points positioning

f——-

/

[ Updated point positions ]

BIE solution (Eq. 18)

Source strength
& Potential field

Quadrature (Eq. 19)

-
M;; My -
M; = Mo Mgy

.

Lagrange (Eq. 1)

‘ <
Dynamics

& Time integration l
(a a 4 |/

Figure 2: Our workflow. The red parts in My are the key non-zero
blocks that cause coupling. The shaded part represents the simu-
lation loop. The operations in the rightmost column are all differ-
entiable, enabling the use of derivatives of the Lagrange function
with respect to coordinates in the dynamics.

of the object’s surface (Afy) is approximated to be proportional to
the component of the local rigid body velocity v along the surface,
scaled by fluid density p and control area AA, as shown in Eq. 22,
where the coefficient v can be used to adjust the viscosity of the
liquid (Fig. 4). The comparison is performed on a scenario where
a heavy sphere falls onto a plane and generates fluid motion that
influences an oblate spheroidal coin.

Af; = —vp[v— (v-n)nJAA (22)

As shown in Fig. 3, our method produces results that are compa-
rable to LBM in terms of both rigid body trajectories and physical
details. Specifically, as the heavy sphere approaches the ground, the
displaced fluid generates an upward flow that induces a counter-
clockwise rotation in the coin. We also visualize the fluid velocity
magnitude field to reveal fine-scale interactions between the flow
field and rigid bodies in the LBM. Our method reproduces similar
rigid body dynamics without requiring volumetric simulation.

In terms of performance, our method takes 0.31 seconds per
frame. In contrast, LBM requires a 225 x 405 x 450 grid to achieve
similar fidelity, resulting in over 4 seconds per frame. In terms of
memory cost, our method requires 2088MB of GPU memory, while
LBM takes 4298MB. Under a lower resolution, LBM can no longer
resolve the fine-grained flow details (e.g., the coin-ground gap), re-
sulting in artifacts such as the coin stuck to the ground (Fig. 5).
While the LBM baseline uses a highly optimized GPU implementa-
tion, our method, implemented in Python with custom C++/CUDA
kernels, still achieves an order-of-magnitude speedup without com-
promising result quality. We also compared with the performance
of [SPG*24]. Although their approach requires only a few millisec-
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onds of simulation time per frame, it completely fails to achieve
coupling effects. Employing [CSD24]’s preconditioner in this case
achieves 40% overall speedup over PCG with the Jacobi precon-
ditioner. This is because the former leads to faster convergence
(Fig. 6), requiring significantly fewer PCG iterations to reach cer-
tain threshold, despite the additional time needed to construct the
preconditioner.

Frame 137 Frame 166 Frame 234

Figure 3: Falling ball. Top, as the heavy sphere approaches the
ground, the displaced fluid generates an upward flow via LBM that
induces a counterclockwise rotation in the coin. We also visual-
ize the magnitude of the velocity field for the LBM output, where
green indicates a larger magnitude. Middle, without performing
volumetric fluid simulation, our method produces a comparable re-
sult, while being 13X faster. Bottom, method in [SPG*24] fails to
capture coupling effects due to low grid resolution.

v=6x10"3 v=12x10"2 v=24x10"2

Figure 4: Fulling ball with different viscosity. Unit of Vv is m/s.
The increased viscosity causes the coin to stabilize more quickly,
as evidenced by the distance it is pushed away. Top, frame 137.
Middle, frame 156. Bottom, frame 239.

Comparison with [BBB07]. We further compare our method
with a variational fluid-solid coupling framework [BBB07] using a
simple experiment in which a cube moves through a fluid with an

© 2025 The Author(s).
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Frame 137

Frame 155 Frame 249

Figure 5: Falling ball with lower resolution LBM. The coin inac-
curately adheres to the ground during the sphere’s descent. This
experiment used a resolution of 200 x 360 x 400, with a runtime
of 2.6 seconds per frame.

107!
—— [CSD24]'s preconditioner

1073 —— Jacobi preconditioner
sl
g
1077
107
10—1 1]
0 100 200 300 400 500
iteration

Figure 6: PCG convergence behavior comparison. The blue line
reaches the threshold and terminates after 59 iterations.

initial upward velocity. Both our method and the LBM allow the
cube to move along the initial velocity direction over a long dis-
tance. In contrast, the cube with the method from [BBBO7] stops
earlier due to large energy dissipation from grid-based discretiza-
tion and NS solver (Fig. 7). This highlights the limitations of that
approach when simulating fully submerged rigid bodies. The re-
sult of [SPG*24] also exhibits significant dissipation due to the use
of an empirical drag model. In terms of performance, [BBB07] re-
quires over 4 seconds per frame using a 75 x 300 x 75 grid to pro-
duce a stable result, [LWP*23] needs 0.22 seconds per frame with
a 100 x 400 x 100 grid, whereas added-mass-based methods re-
quire about 1ms per frame, as the added-mass tensors are constant
in single-body cases and can be precomputed.

RiRA R

Init [BBBO7] [SPG*24] [LWP*23] Ours

Figure 7: Cube pushing. Given a simple test that the cube is initial-
ized with an upward velocity, both our method and LBM [LWP*23]
move the cube along the initial direction with a long distance before
stopping, but the cube with the method in [BBBO7] or [SPG*24]
can only move a small distance due to large energy dissipation.

Underwater grasping. Gripper manipulation is a fundamental
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challenge in robotic control, and its complexity increases signifi-
cantly in fluid environments. In particular, gripper motion perturbs
the surrounding fluid, which in turn affects the dynamics of the tar-
get object, as illustrated in Fig. 1 top. As a result, naive control
strategies designed for dry environments often fail underwater; for
instance, the closing motion of a gripper can generate fluid flow
that pushes the target object away, leading to a failed grasp. How-
ever, by manually fine-tuning the grasp trajectory, e.g., moving the
gripper slowly in the same direction as the coin as shown in Fig. 1
bottom, it is possible to achieve a successful grasp. This example
highlights a promising application of our framework: enabling un-
derwater robotic manipulation tasks for training deep learning al-
gorithms in physically realistic environments.

Swimming. Using the controller described in [JLH*21], we can
simulate the scenario where an articulated rigid-body robotic fish
starts swimming from rest in a potential flow environment. The sys-
tem consists of 3,840 triangular mesh elements, with each frame of
simulation taking 0.4 seconds. Building on this, we can simulate
the mutual influence between the robotic fish and other underwater
objects through fluid interactions. First, a small fish is modeled as
a passive rigid body, allowing us to observe how the robot’s swim-
ming flow affects nearby bodies. Fig. 8 illustrates such an interac-
tion, where the passive fish is carried by the surrounding flow and
effectively pushed away from the robot, avoiding collision without
any active control. Next, in a more dynamic scenario, the robotic
fish swims adjacent to a larger fish executing oscillatory motions,
as shown in Fig. 9. The vigorous motion of the latter significantly
disrupts the robot’s trajectory, causing it to drift laterally. These ex-
amples demonstrate how fluid-mediated interactions can both affect
and be affected by the robot’s motion. Accurately capturing these
complex dynamics is therefore essential for informing the design
and training of underwater control strategies.

Figure 8: The impact of the swimming robotic fish on the small
fish’s movement from two perspectives. Note that no collision oc-
curred in this example.

Scalability test. To evaluate the efficiency of our accelerated
algorithm, we benchmark its scalability against native PyTorch
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Figure 9: The impact of a large oscillating fish tail on the robotic
fish’s movement, showing significant lateral drift caused by fluid
interaction. The original and disturbed trajectories are shown in
red for comparison.

operators. Specifically, we compare three methods for solving
Eq. 20, pseudo-inverse operator torch.linalg.pinv, least-
squares solver torch.linalg.lstsqg, and our custom opera-
tor MinvFE. The evaluation is performed on a single-DOF object
using meshes with varying face counts. As shown in Fig. 10, al-
though 1 st sqg offers a fast forward pass, its backward computation
is slow, resulting in an overall performance similar to pinv. In con-
trast, our MinvF operator achieves substantial speedups over the
native PyTorch methods, particularly for high-resolution meshes.
To further demonstrate the efficiency of our approach, Table 1
presents a detailed breakdown of performance across all examples,
including memory consumption and per-frame timings for forward
computation, backpropagation, and other calculations.

@
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Figure 10: Time consumption of different operators. All reported
timings include complete forward and backward passes.

Discussions While our assumption of potential flow limits the
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Table 1: Statistics. The column “Memory(MB)” records peak GPU memory consumption during runtime. The last four columns show the time
consumption per frame for forward computation, backpropagation, other dynamics calculation parts, and the whole process, respectively.

Case #Rigid Bodies DoF #Faces Memory(MB) Forward (s) Backward (s) Others (ms) Total Time(s)
Falling Ball 3 5 3582 2088 0.179 0.131 0.379 0.310
Grasping 4 6 3768 2475 0.187 0.225 0.546 0.413
Fish near Tail 4 6 5144 3821 0.382 0.436 0.587 0.819
Affected Clown Fish 4 8 4646 3877 0.395 0.544 0.700 0.940

range of phenomena our framework can capture, such as unsteady
vortices or turbulence, it remains a good approximation in scenar-
ios where turbulence plays only a minor role compared to iner-
tial forces, such as slow or moderate motion of submerged bodies,
like robotic grasping and object manipulation tasks, a regime com-
monly encountered in marine engineering [JLH*21, LYHJ22].

5. Conclusion

In conclusion, we have presented a framework that bridges the gap
between efficiency and physical realism in underwater multi-rigid
body simulations by extending the classical added mass paradigm
through a fast BIE solver and variational dynamics principle. By
capturing global fluid-mediated interactions without volumetric
meshing and leveraging advanced preconditioning techniques, our
method enables accurate and scalable simulation of complex multi-
body dynamics in incompressible, irrotational fluids. Our approach
not only advances the fidelity of underwater simulation, but also
opens the door to practical deployment in underwater robotic ap-
plications.

Limitations. While our framework provides an efficient and
physically grounded approach for simulating fluid-mediated inter-
actions among multiple rigid bodies, it inherits limitations from
the potential flow assumption. In particular, the irrotational model
cannot capture vorticity, making it unsuitable for vortex-dominated
phenomena such as wake interactions or turbulent flows. It would
be interesting to incorporate approximate vorticity effects or hy-
brid schemes that blend potential flow with vortex particle methods.
Such extensions could enable a broader range of flow conditions
while maintaining advantages in speed and fidelity.
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Appendix A: Notation

Table 2 summarizes symbols and notations used in this paper.

Table 2: Notation table.

Notation | Description

T; e R? Translation of body i
R; € SO(3) | Rotation of body i

0; € R® Minimal 3D rotation vector for body i
q; = (T;,6;) | Configuration of body i
q Configuration of the system
M(q) Generalized mass matrix
V(q) User-defined potential energy
£L(q,q) Lagrangian function
; Angular velocity of body i in world frame
M, Generalized mass matrix of body i
My, Decoupled fluid-added mass matrix of body i
m; Mass of body i
I; € R¥*3 | Inertia tensor of body i in body frame

(o] Potential field of the velocity field
Q CR? Space taken by the ith rigid body in world frame
n;(x) Outward normal of body i at x in world frame
Kr Kinetic energy of solid
Ky Kinetic energy of fluid
0Q; Boundary of body i
Xjj The world-space center of the jth face of the ith body
P(x,y) 3D fundamental solution of the Laplace equation
P Fluid density
€ Offset distance for source points
Ky Fundamental solution matrix
Kj? normal gradient matrix
D Diagonal matrix with face areas
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