
Real-Time Knit Deformation and Rendering
TAO HUANG∗, LIGHTSPEED, USA
HAOYANG SHI∗, University of Utah, USA
MENGDI WANG∗, LIGHTSPEED, USA
YUXING QIU, LIGHTSPEED, USA
YIN YANG, University of Utah, USA
KUI WU, LIGHTSPEED, USA

St
re
tc
he
d

Re
st
st
at
e

Simulation Rendering
1.05ms 23.6ms

Fig. 1. Given the animated stitch mesh with a non-periodic Flame pattern (left), our system produces faithful yarn geometry (middle) based
on underlying mesh deformation and high-quality knit rendering with fiber-level details under environmental light (right). The simulation and
rendering take 1.05 and 23.6 ms, respectively, on an Nvidia RTX3090.

The knit structure consists of interlocked yarns, with each yarn comprising
multiple plies comprising tens to hundreds of twisted fibers. This intricate
geometry and the large number of geometric primitives present substantial
challenges for achieving high-fidelity simulation and rendering in real-time
applications. In this work, we introduce the first real-time framework that
takes an animated stitch mesh as input and enhances it with yarn-level
simulation and fiber-level rendering. Our approach relies on a knot-based
representation to model interlocked yarn contacts. The knot positions are in-
terpolated from the underlying mesh, and associated yarn control points are
optimized using a physically inspired energy formulation, which is solved

∗Authors contributed equally to this work.

Authors’ addresses: Tao Huang, tao_huang@ucsb.edu, LIGHTSPEED, Los Angeles,
CA, USA; Haoyang Shi, haoyang.shi@utah.edu, University of Utah, Salt Lake City,
UT, USA; Mengdi Wang, mengdi.wang@gatech.edu, LIGHTSPEED, Los Angeles, CA,
USA; Yuxing Qiu, yuxqiu@gmail.com, LIGHTSPEED, Los Angeles, CA, USA; Yin Yang,
yangzzzy@gmail.com, University of Utah, Salt Lake City, UT, USA; Kui Wu, walker.
kui.wu@gmail.com, LIGHTSPEED, Los Angeles, CA, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 0730-0301/2025/8-ART
https://doi.org/10.1145/3731184

through a GPU-based Gauss-Newton scheme for real-time performance. The
optimized control points are sent to the GPU rasterization pipeline and ren-
dered as yarns with fiber-level details. In real-time rendering, we introduce
several decomposition strategies to enable realistic lighting effects on com-
plex knit structures, even under environmental lighting, while maintaining
computational and memory efficiency. Our simulation faithfully reproduces
yarn-level structures under deformations, e.g., stretching and shearing, cap-
turing interlocked yarn behaviors. The rendering pipeline achieves near-
ground-truth visual quality while being 120,000× faster than path tracing
reference with fiber-level geometries. The whole system provides real-time
performance and has been evaluated through various application scenarios,
including knit simulation for small patches and full garments and yarn-level
relaxation in the design pipeline.

CCS Concepts: • Computing methodologies → Physical simulation;
Rendering.

Additional Key Words and Phrases: Knit, stitch, yarn-level modeling, fiber
details, real-time, mechanic-aware

ACM Reference Format:
Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu.
2025. Real-Time Knit Deformation and Rendering. ACM Trans. Graph. 44, 4
(August 2025), 12 pages. https://doi.org/10.1145/3731184

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

HTTPS://ORCID.ORG/0009-0002-3458-0851
HTTPS://ORCID.ORG/0000-0002-6917-5007
HTTPS://ORCID.ORG/0000-0001-5757-3510
HTTPS://ORCID.ORG/0000-0003-2390-0282
HTTPS://ORCID.ORG/UNIVERSITY OF UTAH
HTTPS://ORCID.ORG/0000-0003-3326-7943
https://orcid.org/0009-0002-3458-0851
https://orcid.org/0000-0002-6917-5007
https://orcid.org/0000-0001-5757-3510
https://orcid.org/0000-0003-2390-0282
https://orcid.org/University of Utah
https://orcid.org/0000-0003-3326-7943
https://doi.org/10.1145/3731184
https://doi.org/10.1145/3731184

2 • Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu

1 INTRODUCTION
Knitting is an additive manufacturing technique that creates gar-
ments by interlocking yarn loops, widely applied in everyday prod-
ucts such as clothing, home decor, and personal accessories such as
hats and bags. By combining different types of stitches, knit designs
can achieve intricate patterns, textures, and visual effects that en-
hance both the functionality and aesthetic appeal of garments and
accessories. However, knit design remains a tedious trial-and-error
workflow. Artists must wait until a physical sample is manufac-
tured to observe how the stitches deform and how the yarn behaves
visually, making it difficult to predict the final appearance and struc-
ture during the design process. Industry provides software tailored
specifically for their machines, such as Shima Seiki [Shima Seiki
2011] and Stoll [Stoll 2011], as well as software solutions aimed
at enhancing design and production processes in knitting, such
as PaintKnit [Logica 2020], which rely on physically inspired re-
laxation and advanced fabric rendering. However, these tools lack
physics-based simulation and high-fidelity rendering capabilities,
preventing designers from achieving accurate previews.

The knit structure consists of interlocked yarns, where each yarn
is made up of multiple plies containing tens to hundreds of fibers
twisted together. This intricate geometry, combined with a large
number of geometric primitives, poses significant challenges to
achieving high-fidelity simulation and rendering in real time. Unfor-
tunately, most previous work suffers from high computational costs
and is not suitable for real-time scenarios [Montazeri et al. 2021;
Sperl et al. 2020; Yuan et al. 2024; Zhu et al. 2023]. Real-time methods
either omit physically based fiber shading and global illumination
in rendering [Wu and Yuksel 2017] or support only specific stitch
types and simulation scenarios [Sperl et al. 2021].

In this work, we present the first real-time framework that seam-
lessly integrates yarn-level simulation and fiber-level rendering
with details, providing a high-quality knit appearance prediction.
Like Sperl et al. [2020], our simulator assumes that the input cloth
mesh animation already contains cloth-scale features and adds yarn-
level detail purely based on mesh-level deformation. Instead of rely-
ing on precomputed data, we propose a knot-based representation
to model yarn interactions at contacts. Each knot is associated with
a set of control points that define individual yarn splines. During
the simulation, knot positions are interpolated from the underlying
mesh. Then, with knot positions fixed, a GPU-based Gauss-Newton
scheme is deployed to optimize the associated control points, mini-
mizing angles between yarn segments and ensuring consistent yarn
lengths so as to effectively preserve the physical accuracy and visual
fidelity of the deformed yarn structure. Given the resulting control
points from the simulation, we render yarns as camera-facing strips
via the GPU rasterization pipeline. Due to the distinct geometric dis-
tributions, fiber geometries are categorized into regular and flyaway
fibers, and each is represented through a dedicated set of textures.
We further decompose the shading process into yarn and fiber levels
to efficiently handle multiple scattering with fiber-level details and
support environment lighting.
Our simulation pipeline requires no pre-computed data or peri-

odic boundary conditions, making it versatile enough for users to
design a wide range of knit patterns interactively. Our knot-based

representation achieves a trade-off between efficiency and accu-
racy by ignoring out-of-plane force and provides 7,680× speedup to
full yarn-level simulation. Our rasterization pipeline achieves near-
ground-truth visual fidelity while being 120,000× faster than path
tracing reference with fiber-level geometries. The whole simulation
and rendering system is fast and delivers real-time performance,
making it an ideal solution for various application scenarios, such as
pattern design and knitted garment animation. We demonstrate the
robustness and adaptability of our framework through diverse exam-
ples, including knit simulations for small patches and full garments,
as well as yarn-level relaxation within the design pipeline.

2 RELATED WORK
This section briefly reviews knit design frameworks and the tech-
niques for yarn-level simulation and rendering.

Knit Design. While industrial knitting machine companies such
as Shima Seiki [Shima Seiki 2011] and Stoll [Stoll 2011] provide knit-
ting design software tailored specifically for their machines, these
tools lack physics-based simulation and high-fidelity rendering ca-
pabilities, preventing designers from achieving accurate previews.
In academia, Yuksel et al. [2012] first introduced stitch meshes, which
abstract interlocked stitch structures into faces (typically quads or
pentagons) and were initially developed for rendering and anima-
tion purposes. This framework has since been extended for hand-
knitting [Wu et al. 2019], support for arbitrary input meshes [Wu
et al. 2018], machine knittability [Narayanan et al. 2019], wearabil-
ity [Wu et al. 2022], sensing [Luo et al. 2021; Zlokapa et al. 2022],
and pneumatic actuation [Luo et al. 2022]. Significant efforts have
also been made to develop more intuitive and automated design
pipelines, such as using shape primitives [Kaspar et al. 2019; Mc-
Cann et al. 2016] and cut-and-sew patterns [Kaspar et al. 2021].
Recently, Twigg-Smith et al. [2024a,b] introduced simplified mass-
spring systems to relax TopoKnit [Kapllani et al. 2021] structures
in 2D. However, these methods are limited to simple 2D stretching
and cannot handle more complex 3D scenarios. We propose a knot-
based representation of the concept of TopoKnit, but we extend it
by incorporating additional contact and control points that allow
for reconstructing and optimizing natural yarn shapes when the
underlying mesh is deformed.

Knit Simulation. Kaldor et al. [2008, 2010] were the first to simu-
late knitted structures by explicitly modeling yarn-yarn interactions.
Several subsequent works sought to accelerate these simulations
through various approaches: assuming persistent contact [Cirio
et al. 2014, 2016], resolving collisions with background grids via
material point method [Jiang et al. 2017], mixing yarn-level and
triangle-based representations [Casafranca et al. 2020], homogeniz-
ing knit behavior using thin shells [Sperl et al. 2020; Yuan et al. 2024],
and leveraging neural networks for efficiency [Feng et al. 2024].
Sageman-Furnas et al. [2019] use the Chebyshev net to simulate
knotted structures instead of considering yarn-yarn contacts. The
stitch mesh [Yuksel et al. 2012] introduces a two-stage mesh-based
and yarn-level relaxation process to achieve realistic appearances.
However, yarn-level relaxation remains computationally expensive
due to its reliance on full yarn-level simulation. While Leaf et al.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Real-Time Knit Deformation and Rendering • 3

[2018] introduced a GPU-based parallelization for small yarn-level
patch relaxation, it remains computationally challenging to simulate
full garments due to complex yarn-yarn collision and high degrees of
freedom, making such approaches impractical for real-time applica-
tions. Recently, Sperl et al. [2021] proposed using triangle strains to
interpolate precomputed yarn geometry in real time. However, their
method shares the same limitations as other data-driven approaches,
including dependency on precomputed data and limited generaliza-
tion. Inspired by Hsu et al. [2024], our framework computes yarn
deformation on-the-fly rather than relying on precomputed data.

Knit Rendering. Traditionally, knit structures are rendered as thin
sheets using data-driven approaches, such as Bidirectional Texture
Functions (BTF) [Dana et al. 1999] or neural networks [Kuznetsov
et al. 2021]. Another category of methods converts entire yarn with
fiber geometries into volume data for rendering [Gröller et al. 1995;
Jakob et al. 2010; Khungurn et al. 2016], but the costly format con-
version limits their efficiency in dynamic scenes. Recent approaches
that explicitly render geometries demonstrate a remarkable level
of realism, using 3-D spatial projection based on underlying sur-
faces [Hoffman et al. 2020], fiber-level geometries [Khungurn et al.
2016; Luan et al. 2017], ply with pre-computed textures [Montazeri
et al. 2020], or yarns with aggregated shading models [Zhu et al.
2023]. Despite their quality, these methods are computationally
and storage-intensive, making them impractical for real-time appli-
cations. To address efficiency, Wu and Yuksel [2017, 2019] utilize
hardware tessellation to create fiber geometries directly on the GPU,
but their method does not account for global illumination and envi-
ronmental lighting, which limits their visual fidelity. To efficiently
approximate complex light scattering between hairs, Zinke et al.
[2008] introduced Dual Scattering to decompose multiple scattering
into global and local scattering using simplified approximations,
which is further extended by Ren et al. [2010] to support environ-
ment lighting. However, this approach is computationally expensive
for knit rendering with millions of fiber segment geometries.

3 PHYSICS-AWARE STITCH OPTIMIZATION
This section first introduces our 2.5D knot-based representation
to model yarn structure within the underlying mesh and then de-
scribes an optimization scheme that ensures visually plausible yarn
geometry when the mesh undergoes deformation.

3.1 Knot-based Yarn Representation
Yarn loop is the fundamental structural element of knitted textiles.
A new loop is created when a yarn is drawn through a pre-existing
loop. We adopt Stitch Mesh [Yuksel et al. 2012] to abstract the knit
structure using quad faces. As illustrated in Fig. 2a, the green yarn
connects to the bottom edge, serving as the base of the loop, while
the red yarn interlocks with the green yarn to form a stitch.
To achieve a tradeoff between efficiency and accuracy, we intro-

duce a 2.5D knot-based representation for the interlocking structure
between green and red yarns on the stitch face. The interlocking
structure is centered at node 𝑘 () and defined by three contact
points, as shown in Fig. 2b. The top and bottom contact points, 𝑐0
and 𝑐1 (), represent crossings where the two yarns overlap, with
one yarn positioned on top of the other. The contact, located at node

(a) Stitch face (b) Our knot-based
representation (c) 3D Zoom-in

𝑘

𝑐0

𝑐1

𝑝0

𝑝1 𝑘𝑝0 𝑝1

𝑐+0
𝑐0
𝑐−0

𝑐+1
𝑐1
𝑐−1

Fig. 2. Given the quad stitch mesh face (a) with its associated yarn
pieces, we abstract it into a 2D knot-based representation (b), which
can then be converted back into a 3D yarn curve (c). In particular,
orange circles in (c) indicate contact points on the face plane, and red
and green circles are actual yarn control points off the plane along
positive and negative normal directions.

𝑘 , separates the two yarns and maintains a stable spacing between
them. 𝑝0 and 𝑝1 are control points for the yarn spline correspond-
ing to the contact node 𝑘 . Node 𝑘 , contact points 𝑐0 and 𝑐1, and
control points 𝑝0 and 𝑝1 lie on the plane of the stitch face. These
points jointly define the interactions between yarns, ensuring a
stable twisting structure.

Our representation assumes the following geometric properties to
simplify the interlocked structure: (1) The distance between control
points 𝑝0 and 𝑝1 is constant at 2𝑟 , where 𝑟 refers to yarn radius.
This fixed distance reflects the physical compression of yarns when
they contact. (2) The direction d = (x𝑐0 − x𝑐1)/| |x𝑐0 − x𝑐1 | | between
contact points 𝑐0 and 𝑐1 is perpendicular to the contact direction
b = (x𝑝0 − x𝑝1)/| |x𝑝0 − x𝑝1 | |, where 𝑝0 and 𝑝1 on a stitch face plane,
such that b = d × n, where n is the face normal direction and x•
refers to the position. (3) The knot is a symmetric structure, with its
position centered relative to the four planar points 𝑐0, 𝑐1, 𝑝0, and 𝑝1.
Hence, given a knot centered at x𝑘 , positions of the planar points
are defined as:

x𝑐0 = x𝑘 + 𝑙 d, x𝑐1 = x𝑘 − 𝑙 d,

x𝑝0 = x𝑘 + 𝑟 b, x𝑝1 = x𝑘 − 𝑟 b,
(1)

where 𝑙 is the half distance between crossing points 𝑐0 and 𝑐1. The
contact points can be further offset by a distance of 𝑟 along the
direction n to make control points for the yarn curves, as shown
in Fig. 2c. For instance, control points above and below the contact
point 𝑐0 can be computed as:

x𝑐+0 = x𝑘 + 𝑙 d + 𝑟 n, x𝑐−0 = x𝑘 + 𝑙 d − 𝑟 n. (2)

By connecting yarn control points 𝑐+0 , 𝑝0, and 𝑐
−
1 , the yarn geometry

can be recovered in 3D.
Our knot-based representation can also model other types of

stitches, as shown in Fig. 3. For a decrease stitch, two loops from
the bottom share the same knot position, but each yarn maintains
its own contact points and control points. In contrast, yarn-over
increase introduces an additional loop without pulling it through
an existing loop, so it only has two knots, similar to a regular knit.

3.2 Knot-based Yarn Optimization
Given the underlying mesh driven by a cloth simulator, the em-
bedded yarn must also deform to reflect the changes accordingly.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu

(a) Decrease stitch (b) Increase stitch

Fig. 3. Knots at contacts for decrease (a) and yarn-over increase (b).

However, as noted by Sperl et al. [2021], uniformly interpolating
yarn control points along with the mesh fails to account for yarn-
level physics. Specifically, yarn should contact with each other when
the fabric is stretched. On the other hand, we observe that yarn slid-
ing is minimal due to the high friction caused by the fuzzy flyaway
fibers around the yarn. As shown in Fig. 4, while yarn geometry can-
not be stretched uniformly, the knots exhibit a uniform distribution
when stretched, which is another motivation for our knot-based
representation.
To avoid the expensive full yarn-level simulation [Cirio et al.

2014; Leaf et al. 2018], we propose a novel physics-aware knot-
based yarn optimization scheme to recover physically plausible
yarn curves when deforming. Our scheme begins by interpolating
the knot positions from the deformed underlying mesh. Then, we
optimize yarn control point positions x by minimizing the following
energies:

argmin
x𝑖

𝑤angle

𝑚∑︁
𝑖

𝐸𝑖angle +𝑤length

𝑛∑︁
𝑖

𝐸𝑖length (3)

𝑠 .𝑡 .


(x𝑗𝑐0 + x𝑗𝑐1)/2 = x𝑘
(x𝑗𝑝0 + x𝑗𝑝1)/2 = x𝑘
| |x𝑗𝑝0 − x𝑗𝑝1 | | = 2𝑟
(x𝑗

𝑘
− x𝑗𝑝0) · (x

𝑗
𝑐0 − x𝑗

𝑘
) = 0

∀ knot 𝑗, (4)

Reference (rest) Ours (rest) Ours (10% stretched) Ours (30% stretched)

Reference (fully stretched) Ours (fully stretched)

Zoom-in (rest) Zoom-in (fully stretched)

Fig. 4. Compared to the image of a real knit sample from KnitDB cap-
tured by Hofmann et al. [2019] (reference). Our method can reproduce
the knit appearance and yarn-level deformation in rest and stretch
states under environmental light.

with𝑤• being the corresponding weights, where our energies en-
force minimal deviations in yarn shape from its original configu-
ration in terms of angle between consecutive yarn segments and
segment length:

𝐸𝑖angle =
(x𝑖+1−x𝑖
| |x𝑖+1−x𝑖 | | ·

x𝑖+2−x𝑖+1
| |x𝑖+2−x𝑖+1 | | −

x𝑖+10 −x𝑖0
| |x𝑖+10 −x𝑖0 | |

· x𝑖+20 −x𝑖+10
| |x𝑖+20 −x𝑖+10 | |

)2 (5)

𝐸𝑖length = (| |x𝑖+1 − x𝑖 | | − | |x𝑖+10 − x𝑖0 | |)
2 , (6)

where x𝑖0 and x𝑖 indicate the rest and current position of control
point 𝑖 , respectively. The rest positions of yarn control points are
predefined as stitch templates.

Fig. 5. Yarn persists in curly
shape even after unraveling.

This pair of energies is designed
to encourage the yarn to preserve
its original loop configuration be-
cause the yarn tends to retain its
curly shape even after unraveling,
a phenomenon known as fiber mem-
ory, as shown in Fig. 5. This plas-
ticity arises when the knit structure
is maintained for a period and rein-
forced further after the fabric under-
goes washing and drying processes.
The optimization is further subject to several geometric con-

straints (Eq. 4), derived from our knot representation, formalized
in Eq. 1 and 2. Note that x𝑖 and x𝑗𝑝0 , x

𝑗
𝑝1 , x

𝑗

𝑐+0
, and x𝑗𝑐−0 are the same

set of out-of-plane control point positions with different coordinates
used to constrain the optimization in Eq. 4, and their representations
are interchangeable according to Eq. 1 and 2.

Our knot interpolation operates independently on each stitch face,
making it straightforward to parallelize. Simple quadratic energies
allow for an efficient Gauss-Newton scheme on the GPU. Despite
its simplicity, the method ensures smooth and realistic yarn shapes,
leveraging physics-aware energy formulations and constraints de-
rived from our knot representation.

4 YARN RENDERING WITH FIBER-LEVEL DETAILS
We review the fiber shading model and dual scattering and describe
our real-time rendering pipeline with environment lighting.

4.1 Preliminary
Single fiber shading model. As suggested by Zhu et al. [2023], the

interaction between light and a single fiber can be decomposed into
reflection 𝑅 and transmission 𝑇𝑇 , along with an additional diffuse
lobe 𝐷 to approximate multiple scattering within the fiber. The
fiber bidirectional curve scattering distribution function (BCSDF),
denoted as 𝑓 , is defined as:

𝑓 (𝜃𝑖 , 𝜙𝑖 , 𝜃𝑜 , 𝜙𝑜) =
∑︁

𝑝∈{𝑅,𝑇𝑇 ,𝐷 }
𝐴𝑝 𝑀𝑝 (𝜃ℎ) 𝑁𝑝 (𝜙), (7)

where 𝑝 denotes different types of lobes, 𝜙 = 𝜙𝑜 − 𝜙𝑖 is the relative
azimuthal angle, 𝜃ℎ = (𝜃𝑖 + 𝜃𝑜)/2 is the longitudinal half angle, and
𝐴𝑝 is the attenuation function associated with each lobe. 𝑀𝑝 and
𝑁𝑝 are longitudinal and azimuthal scattering functions, respectively.
Subscripts 𝑖 and 𝑜 indicate incoming and outgoing components.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Real-Time Knit Deformation and Rendering • 5

Dual scattering (DS). To efficiently handle the complicated light
scattering between hairs, Zinke et al. [2008] proposed dual scattering
to approximate the fraction of light Ψ𝐷𝑆 (x, 𝜔𝑑 , 𝜔𝑖) entering the hair
volume from direction 𝜔𝑑 that is scattered inside the hair volume
and finally arriving at point x from direction 𝜔𝑖 with two compo-
nents, global multiple scattering Ψ𝐺 (x, 𝜔𝑑 , 𝜔𝑖) and local multiple
scattering Ψ𝐿 (x, 𝜔𝑑 , 𝜔𝑖), as:

Ψ𝐷𝑆 (x, 𝜔𝑑 , 𝜔𝑖) = Ψ𝐺 (x, 𝜔𝑑 , 𝜔𝑖) (1 + Ψ𝐿 (x, 𝜔𝑑 , 𝜔𝑖)) , (8)

where the global component represents light arriving at shading
point x after passing through multiple fibers, and the local com-
ponent estimates the total contribution from nearby fibers due to
multiple light bounces.

4.2 Rendering Pipeline
Yarn comprises multiple plies, each containing tens to hundreds of
fibers twisted together to maintain stability. The densely packed
fibers at the yarn centerline form the core structure, while flyaway
fibers, introduced during the yarn fabrication process, exhibit a
sparse distribution and cover a larger spatial area. The complex
structure and a large number of geometric primitives present a
significant challenge for high-fidelity rendering, especially multiple
scattering between fibers, in real time.
Hence, given yarn control points from the simulation, we adopt

the GPU rasterization pipeline to render yarn as a camera-facing
strip with precomputed periodic fiber-level tangent and normal
textures and approximate multiple scattering via DS. We further in-
troduce the following decomposition strategies for real-time perfor-
mance while maintaining rendering quality. First, as shown in Fig. 6,
to accommodate the distinct geometric distributions of different
types of fiber, we decompose the yarn geometry into the following:
• Regular fibers, representing fibers in the core that exhibit a
dense and organized arrangement;

• Flyaway fibers, representing loosely distributed and irregular
fibers that extend outward from the core.

Fig. 6. Three periodic regular and flyaway textures connected seam-
lessly. Gray indicates regular fibers, and flyaway fibers are colored
based on tangent direction. Dashed lines refer to texture borders.

Second, approximating multiple scattering and handling envi-
ronment lighting at the yarn level is fast but misses fiber details.
Individual fibers demand extremely high-resolution framebuffers,
e.g., deep opacity maps for DS, as fibers are substantially thinner
compared to the overall size of the knit structure. Therefore, we
decompose the shading process into yarn- and fiber- levels.

4.3 Regular Fibers
The twisted fiber structure, combined with migrated and flyaway
fibers, challenges the layered structure assumption used in DS. Addi-
tionally, the low roughness of the R/TT lobes reduces the proportion
of light that traverses through the primary light paths, which DS
approximation focuses on. As a result, as shown in Fig. 7 fourth row,

Local scattering ΨFiber
𝐿

Azimuthal DS correction and fiber-level shadowing texture 𝜉𝑀 ΨFiber
𝐺,𝑀

Longitudinal DS correction and fiber-level shadowing texture 𝜉𝑁 ΨFiber
𝐺,𝑁

Fiber-level geometry with naive dual scattering

Reference: fiber-level geometry with path tracing

Ours final: yarn-level geometry with textures

Fig. 7. With pre-computed DS correction and fiber-level shadowing
textures, our yarn-level geometry achieves results nearly indistinguish-
able from the reference with fiber-level geometry and path tracing.

significant deviations arise between the multiple scattering approxi-
mation Ψ𝐷𝑆 by DS and the reference Ψ∗ obtained by path tracing,
especially when the angular between the incident and outgoing
light directions is large.

Dual scattering correction. To ensure results align more closely
with reference from all viewing angles, we introduce a correction
term 𝜉 such that

Ψ∗ (x, 𝜔𝑑 , 𝜔𝑖) ≈ 𝜉 (x, 𝜔𝑑 , 𝜔𝑖) Ψ𝐷𝑆 (x, 𝜔𝑑 , 𝜔𝑖) , (9)

where 𝜉 (x, 𝜔𝑑 , 𝜔𝑖) can be pre-computed over all directions 𝜔𝑑 and
𝜔𝑖 and positions x at given yarn with fiber-level geometry. For
efficiency purposes, this 7D data is further decomposed into the
product of azimuthal and longitudinal contributions as:

𝜉 (x, 𝜔𝑑 , 𝜔𝑖) ≈ 𝜉𝑀 (x, 𝜃) 𝜉𝑁 (x, 𝜙) , (10)

where 𝜃 = 𝜃𝑑 − 𝜃𝑖 and 𝜙 = 𝜙𝑑 − 𝜙𝑖 are the relative azimuthal
longitudinal angle between 𝜔𝑑 and 𝜔𝑖 .

Fiber-level shadowing. Since the fiber geometries are baked into a
yarn texture, the actual fiber geometry is no longer explicitly avail-
able for shadowing. To address this issue, an additional global scat-
tering term ΨFiber

𝐺
(x, 𝜔𝑑 , 𝜔𝑖) is introduced at the fiber level. During

rendering, global scattering between yarns ΨYarn
𝐺

can be computed
based on a yarn-level shadowing pass, while occlusion between
fibers within each yarn ΨFiber

𝐺
is queried from a precomputed tex-

ture. To further reduce storage space, this fiber-level texture is de-
composed into azimuthal ΨFiber

𝐺,𝑀
(x, 𝜃) and longitudinal ΨFiber

𝐺,𝑁
(x, 𝜙)

components. Combining everything together, the dual scattering
function Eq. 8 comes as:

Ψ(x, 𝜔𝑑 , 𝜔𝑖) = 𝜉𝑀 𝜉𝑁 ΨYarn
𝐺 ΨFiber

𝐺,𝑀 ΨFiber
𝐺,𝑁

(
1 + ΨFiber

𝐿

)
. (11)

4.4 Flyaway Fibers
Flyaway fibers are a crucial component of textiles. Their distribution
is more dispersed and irregular, adding significant subpixel-level

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu

details to the rendering results and contributing to the inherent
fuzziness of textiles. During runtime, we use a separate pass to
overlay flyaway fibers on the rendering results of regular fibers.

Procedural flyaway model. To generate realistic flyaway fibers,
we adopt a procedural yarn geometry model [Zhao et al. 2016]. The
vertex position (𝑥,𝑦, 𝑧) of each flyaway fiber is parameterized by
𝑡 ∈ [0, 1] as:

𝑥 (𝑡) = 𝑅(𝑡) cos𝜃 (𝑡), 𝑦 (𝑡) = 𝑅(𝑡) sin𝜃 (𝑡), 𝑧 (𝑡) = 𝑧0 + 𝑧𝑒𝑡 , (12)

where 𝑅(𝑡) = 𝑅0 + 𝑅𝑒𝑡 and 𝜃 (𝑡) = 𝜃0 + 𝜃𝑒𝑡 . To enhance the realism,
we introduce two modifications to this model:
• Random perturbations: Noise is added to the progressive di-
rection of the fibers to introduce random variations, emulating
natural irregularities.

• Curvature adjustment: An 𝛼 parameter is introduced to adjust
the curvature of the fibers, particularly improving the appearance
for side view, as:

𝑅(𝑡) = 𝑅0 + 𝑅𝑒 (1 − (1 − 𝑡)𝛼) . (13)

Flyaway texture baking. Since the flyaway texture is directly ap-
plied to the camera-facing strips during rendering, performing a
precise depth test between the flyaway and regular fibers is imprac-
tical due to the limited hardware floating point accuracy. To address
this challenge, we incorporate depth testing during the texture gen-
eration phase. During texture baking, we rasterize the regular fibers
to create a depth stencil in the first pass. Then, flyaway fibers are
rasterized as any occluded by a regular fiber in the same yarn are
discarded. The tangent information of the remaining visible flyaway
fibers is stored in the texture. Note that we create three periodic fly-
away textures that seamlessly connect at their boundaries, as shown
in Fig. 6, allowing for a smooth transition when repeated. During
rendering, one of the three periodic textures is chosen randomly for
each period along the yarn to avoid pattern artifacts arising from
reusing a single periodic texture.

Reference

Ours

Reference

Ours

High flyaway density Low flyaway densityDiff

Fig. 8. Knit teapot with same regular fibers but flyaway fibers with
different densities. The middle image shows the difference between
these results, highlighting how the flyaway density influences the
overall brightness.

Flyaway rendering. Since the depth test between flyaway and
regular fibers has already been baked into the texture during its
generation, rendering flyaway fibers on top of regular fibers dur-
ing run-time becomes trivial. It is also worth noting that when the
density of flyaway fibers increases, the radiance received by regular
fibers undergoes noticeable changes. Fig. 8 demonstrates that vari-
ations of flyaway density result in consistent brightness changes
between regular fibers. To address this, we adjust the intensity of
local scattering for DS to account for radiance variations.

4.5 Environmental Lighting
To support environment lighting in real-time, we follow Ren et al.
[2010] to use a set of Spherical Radial Basis Functions (SRBF) to fit
the environment map as:

𝐿(𝜔𝑖) ≈ Σ 𝑗𝑊𝑗𝐺 (𝜔𝑖 ;𝜔 𝑗 , 𝜆 𝑗) , (14)

where 𝐺 (𝜔𝑖 ;𝜔 𝑗 , 𝜆 𝑗) = 𝑒𝜆 𝑗 (𝜔𝑖 ·𝜔 𝑗−1) represents the Gaussian SRBF
kernel centered at 𝜔 𝑗 with bandwidth 𝜆 𝑗 . For brevity, we use𝐺 (𝜔𝑖)
to denote an SRBF. The scattering integral under incident environ-
ment lighting can be written as follows:

𝐿(𝜔𝑜) =
∫
Ω
𝐿(𝜔𝑖)𝑇 (𝜔𝑖) 𝑓 (𝜔𝑖 , 𝜔𝑜) cos𝜃𝑖𝑑𝜔𝑖 , (15)

where 𝑓 is the bidirectional scattering function defined in Eq. 7 and
the backward scattering function 𝑇 (𝜔𝑖) is the transmittance in the
incident direction. As suggested by Ren et al. [2010], approximating
transmittance 𝑇 with effective transmittance 𝑇 yields Eq. 15 to

𝐿(𝜔𝑜) = Σ 𝑗𝑊𝑗 𝑇 (𝜔 𝑗 , 𝜆 𝑗)
∫
Ω
𝐺 𝑗 (𝜔𝑖) 𝑓 (𝜔𝑖 , 𝜔𝑜) cos𝜃𝑖𝑑𝜔𝑖 , (16)

where 𝑇 (𝜔 𝑗 , 𝜆 𝑗) is average attenuation of the SRBF lighting 𝑗 and
the integration

∫
Ω𝐺 𝑗 (𝜔𝑖) 𝑓 (𝜔𝑖 , 𝜔𝑜) cos𝜃𝑖𝑑𝜔𝑖 can be pre-computed

as a 4D table 𝐼𝑀 (cos𝜃 𝑗 , cos𝜃𝑜 , cos(𝜃 𝑗 − 𝜃𝑜), 1/𝜆 𝑗).

Runtime rendering. Unfortunately, computing a fiber-level Deep
Opacity Depth Map (DODM) as suggested by Ren et al. [2010] is
computationally expensive, as mentioned before. To achieve an
efficient yet accurate approximation of the average attenuation 𝑇
for each SRBF lighting 𝑗 at runtime, we decompose the computation
into two components. We first interpolate the fiber-level shadowing
texture to estimate the occlusion between the fibers within the same
yarn. Additionally, instead of using DODM, we directly use the
yarn-level shadow map generated from the SRBF center direction
𝜔 𝑗 , as the light direction. The attenuation 𝑇 at the shading point
is then approximated using Percentage Closer Soft Shadows (PCSS)
[Fernando 2005] for soft shadowing. The complete lighting equation
is expressed as:

𝐿(𝜔𝑜) = Σ 𝑗 𝜉𝑀 𝜉𝑛 𝑊𝑗 𝑇
Yarn (𝑐 𝑗 , 𝜆 𝑗)ΨFiber

𝐺,𝑀
ΨFiber
𝐺,𝑁

𝐼𝑚 . (17)

This approach simplifies the computation of 𝑇 by combining fiber-
level shadowing and yarn-level PCSS, thereby reducing the storage
footprint while preserving the soft shadowing quality.

5 IMPLEMENTATION DETAILS
This section outlines the preprocessing stages, followed by a detailed
description of our run-time pipeline implementation.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Real-Time Knit Deformation and Rendering • 7

5.1 Preprocessing
Creating stitch template. Our framework requires a yarn template

for each stitch type as input. To generate the template, we first per-
form a mesh-based relaxation following the method in Yuksel et al.
[2012]. Specifically, we apply stretching forces by assuming equal
edge lengths along the wale and course directions. For pentagonal
faces (increase and decrease stitches), we construct shear forces by
connecting the top and bottom edge vertices. After face reaches the
quasistatic state, we fix the yarn control points along the edges of
the stitch mesh face and iteratively relax the interior yarn control
points to reach a quasistatic equilibrium state that incorporates yarn
contact, similar to Leaf et al. [2018].

Texture baking. To generate the texture set described in Sec. 4.3,
we uniformly sample eight directions in both azimuthal and lon-
gitudinal dimensions, ensuring smooth directional transitions and
close visual alignment with path-traced references. For each sam-
pled direction, we use an offline path tracer to compute both the
reference and DS results for a single yarn with fibers, excluding
global scattering effects. Additional flyaway, normal, and tangent
textures that do not require path tracing are precomputed through
a separate OpenGL rasterization pass.

5.2 Runtime Pipeline
At runtime, the animated stitch mesh can be generated on the CPU
via mesh-based relaxation or position-based dynamics. The vertex
positions are then transferred to the GPU, where we perform knot-
based simulation in CUDA to compute the yarn control points.
Then, these control points are transferred to the OpenGL rendering
pipeline through CUDA-OpenGL interoperability functions.

Simulation. At runtime, the 2D deformation gradient of each
stitch face is computed from the mesh vertex positions. Using this,
yarn control points are uniformly interpolated as the initial guess
for our Gauss-Newton optimizer, which runs in parallel across all
stitch faces. Taking the knit pattern as an example, the optimiza-
tion parameters are the tilt angles and half-lengths, denoted as
Θknit = (𝜃1, 𝜃2, 𝑙1, 𝑙2)𝑇 . The residuals from the target lengths and
angles are computed by iterating over all yarn control points, along
with their Jacobians 𝐽𝑖 = 𝜕𝑟𝑖

𝜕Θ , where 𝑟𝑖 =
√
𝐸𝑖 corresponds to the

bending and stretching energy centered at each vertex. The Gauss-
Newton update step Θ(𝑘+1) = Θ(𝑘) + ΔΘ is then formulated as the
linear system𝐴 ΔΘ = 𝑏, with𝐴 = Σ𝐽𝑖 𝐽

𝑇
𝑖
, 𝑏 = −Σ𝐽𝑖𝑟𝑖 . A direct solver

is used to invert the per-stitch matrix 𝐴. After three iterations, the
resulting 2D control point positions are lifted to 3D by applying
a template-prescribed offset along the normal direction and then
written into the rendering buffer via stored indices. This optimiza-
tion is relatively lightweight and is performed efficiently on a single
CUDA thread per stitch. For a knit tile, the optimizer optimizes the
positions of 8 control points, with another 6 points at the boundary
fixed at the interpolated positions. Finally, the control points are
up-sampled with 4 additional points per segment, resulting in 56
rendering vertices per stitch face in total.

Rendering. Our rendering pipeline consists of three sequential
passes: shadow, regular shading, and flyaway shading. In each pass,
yarns are converted into camera-oriented strips via a geometry

shader. In fragment shader of regular shading, normal, tangent, and
AO textures are periodically mapped onto the strip based on the arc
length along the yarn. For flyaway shading, the RGB channels of
the flyaway texture encode tangent information, while the alpha
channel indicates whether a given location requires shading. This
design prevents incorrect occlusion of certain flyaway fibers when
rendering multiple overlapping layers using high mipmap levels.

6 RESULTS
We conducted all experiments on a system equipped with an AMD
Ryzen Threadripper 3970X 32-core CPU, 256 GB of memory, and a
NVIDIA RTX 3090 GPU. The offline path tracer was implemented
on the CPU and accelerated using Intel oneAPI Threading Building
Blocks (oneTBB) with 64 threads. 16 SRBFs were used to fit the
environment map.

6.1 Simulation
Comparison with interpolation. Fig. 9 demonstrates a knit patch

under stretch and shear. Naively interpolating yarn control points
results in zigzagging yarn curves when the mesh deforms. However,
interpolating knot positions and mapping yarn control points along
with knots exhibit unrealistic curvature when the mesh is under
shearing. In contrast, our knot-based yarn optimization effectively
resolves these issues, producing visually plausible yarn curves, as
highlighted in the zoomed-in view.

Naive interpolation

Knot-based interp. w/o opt.

Ours final: Knot-based interp. w/ opt.

Rest shape

Fig. 9. A knit patch under stretch and shear with naive and knot-
based interpolation, with and without yarn optimization.

Comparison with full yarn-level simulation and [Yuan et al. 2024].
We use a Gauss-Newton scheme with three iterations, which creates
yarn-level hole deformation, as demonstrated in Fig. 10. The com-
putation is parallelized across stitch faces, and, benefiting from our
simplified 2.5D representation, the runtime performance achieves
approximately 1 ms per frame, achieving four orders of magnitude
speed-up compared to full yarn-level simulation (7680 ms), as it in-
volves extensive 3D computation. Furthermore, while our approach
is two orders of magnitude faster than the volumetric homogeniza-
tion method [Yuan et al. 2024] (96 ms), our simplified representation
cannot model out-of-plane forces, such as curl-up or flattening ef-
fects. Note that, except ours, simulation times are obtained from
Yuan et al. [2024] directly without running their code, but timings
are all measured on Nvidia RTX3090.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu
St
re
tc
he
d

Re
st
st
at
e

Fig. 10. From left to right: stitch mesh, yarn geometry after our knot-based optimization, our final rendering result, and images of full yarn-
level simulation result from Yuan et al. [2024]. Our simulation only takes 1 ms per frame, while full yarn-level simulation and volumetric
homogenization [Yuan et al. 2024] take 7680 ms and 96 ms, respectively, per time step.

[Sperl et al. 2021]

Ours

Naive interpolation

Fig. 11. A sleeve with Sperl et al. [2021], ours, and naive interpolation.

Comparison with Sperl et al. [2021]. Fig. 11 presents an animated
knit sleeve to highlight the visual difference between ours and that
of Sperl et al. [2021]. The top image, taken directly from Sperl et al.
[2021], shows tightened stitches under stretching due to their as-
sumption of periodic boundary conditions and elastostatic behavior
without friction during full yarn-level simulation. In contrast, based
on our observations from a real-world yarn-stretching dataset [Hof-
mann et al. 2019], yarn sliding is minimal due to the significant
friction between fuzzy yarns. So, the interlocking yarns at each knot
exert opposing forces that tend to balance each other, resulting in a
more uniform stretching of the knots across the fabric in our sim-
ulation. Note that naively interpolating yarn control points result
in loose stitches with noticeable gaps. Performance-wise, the data-
driven mechanics-aware method 1 takes 0.91 ms in total (0.62 for
CPU strains, 0.16 for GPU displacement, and 0.13 for GPU mapping).
Our optimization only takes 1.03 ms on GPU, comparable to their
data-driven approach. Lastly, while our 2.5D representation limits
the ability to capture curl-up effects and the flattening behavior
of knits under tension, our method remains applicable to a wide
range of patterns. Notably, it is not constrained to periodic bound-
ary conditions, such as Flame (Fig. 1), and local variations, such as
Montague (Fig. 10).

Ablation study on energy weights. We evaluate the effectiveness
of different weights for the angle and length energy terms in our
optimization framework. Specifically, we fix the angle energyweight
to 1 and vary the length energy weight from 102 to 103. Fig. 12
1We used the implementation at https://git.ista.ac.at/gsperl/MADYPG

𝑤length = 103 𝑤length = 102.6 𝑤length = 102

Fig. 12. A shear knit patch with different weights for length energy.

𝛽 = 0 𝛽 = 0.5 𝛽 = 1
Fig. 13. A shear knit patch where knots distance can be adjusted by
a blending parameter 𝛽 .

demonstrates that the bending (angle) energy primarily governs
the overall shape preservation of the yarn under stretched, while
the stretching (length) energy influences the tightness of the yarn
knots. We use𝑤length = 102 and𝑤angle = 1 for all other results.

Non-uniform knot interpolation. Assuming the original undeformed
distance between knots is 𝑑0 and the interpolated distance is 𝑑1, our
knot interpolation scheme also enables user-defined control over
knot spacing through a blending parameter 𝛼 , such that the result-
ing distance is given by 𝑑 = 𝑑0 + 𝛽 (𝑑1 −𝑑0). As illustrated in Fig. 13,
setting 𝛽 = 0 recovers a visual appearance similar to the results of
Sperl et al. [2021].

6.2 Rendering
Comparison with reference and SOTAs. Fig. 14 demonstrates a

knit glove rendered by our method under directional light, with a
screen resolution of 1520×960. Reference is obtained by offline path
tracing with explicit fiber-level geometry. Directly using dual scat-
tering [Zinke et al. 2008] in the full fiber geometry underestimates
irradiance due to oversimplified assumptions about the fiber struc-
ture. However, applying the aggregated ply shading model [Zhu

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://git.ista.ac.at/gsperl/MADYPG

Real-Time Knit Deformation and Rendering • 9

Reference (Path tracing + fiber)
6 min

Ply + single fiber shading model
1.3 min

0.262

Ply + [Zhu et al. 2023]
1.2 min

0.359

Fiber + Dual Scattering
4 sec

0.232

Ours
3.0 ms

0.195

Fig. 14. Comparison to previous rendering solutions. FLIP error maps are displayed at the bottom-left corner. Our method is at least three orders of
magnitude faster and produces results nearly identical to ground truth with fiber-level geometry and path tracing with the lowest FLIP error.

Reference

Ours

Reference

Ours

Reference

Ours

Cotton Extended-rayon3 Rayon4

Fig. 15. Knit teapot with three distinct types of flyaway configurations, cotton, extended-rayon3 (flyaway length is tripled for a fuzzier appearance),
and rayon4. The bottom left and top right of each image compare our method with the reference. These models comprise 51M, 55M, and 61M fiber
segments, respectively. Reference takes 9, 8.3, and 7 min, while ours only needs 5.1, 8.1, and 7.3 ms.

Reference Ours Reference Ours

Directional Lighting Environmental Lighting

Fig. 16. Our approach produces rendered results with equal quality to the reference for view and light direction angles of 15°, 75°, and 180°(left
column), and under different environmental lighting (right column). The reference employs full fiber geometry with 118M segments and takes
around 15 and 28 mins for directional and environment lights, while ours utilizes only 100K segments with only 9.4 and 20.6 ms, respectively.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu

et al. 2023] or the single-fiber shading model at the ply level re-
sults in over-brightness due to inaccuracies in the approximation
of fiber-level scattering within the ply. Our method produces re-
sults that are nearly indistinguishable from the reference. Beyond
its accuracy, our method is significantly faster than previous ap-
proaches. Reference, ply-level methods, and dual scattering require
offline path tracing with 512, 64, and 20 samples per pixel, respec-
tively, to achieve equal-quality (EQ) results. In contrast, our method
only takes 3 ms to achieve the same quality using an OpenGL ras-
terization pipeline with 4× multisample antialiasing (MSAA). In
particular, our approach is 120,000× faster than the reference and
at least three orders of magnitude faster than any existing knit
rendering technique with the lowest FLIP error listed in the lower
left corner of each sub-figure in Fig. 14. Note that the error in our
results arises primarily from the geometry mismatch between our
camera-oriented stripes and the actual yarn geometries.

Flyaways. We test ourmethodwith three distinct types of flyaway
configurations [Zhao et al. 2016] to demonstrate the compatibility
of our method with various flyaway densities, fiber color, and struc-
tures to consistently deliver high-quality rendering close to the
reference (see Fig. 15).

Lighting conditions. Fig. 16 demonstrates that our method can
produce results with an equal quality to the reference for angles
of view and light direction, 15°, 75°, and 180°. Additionally, our
method can effectively capture environmental lighting information,
delivering consistent rendering outcomes, including high dynamic
range (HDR) images for both outdoor and indoor scenarios.

6.3 Demos
Compared to photographs. We evaluate our method through a

qualitative comparison between our results and images of a real
knit sample from KnitDB [Hofmann et al. 2019] in both the rest
and the stretched states (Fig. 4). We create a stitch mesh with the
same number of rows and columns of stitches as in the real sample.
The mesh is pre-simulated using ARCSim [Narain et al. 2012] to
match the overall shape under stretch. By tweaking the fiber shad-
ing parameters, stitch shape, and environmental light, our method
can closely replicate the knit appearance in its rest state. Further-
more, our knot-based approach optimizes the yarn curve throughout
stretching with 1.58ms per frame, effectively predicting the overall
appearance change caused by yarn-level deformation.

Stretching patches with various patterns. We demonstrate four knit
patches with Flame (Fig. 1), Montague (Fig. 10), Stockinette (Fig. 18),
and Ribbing (Fig. 19) patterns animated based on the underlying
stitch mesh with yarn-level deformation details as well as high-
quality fiber-level rendering under environmental light. Simulation
consistently takes around 1 ms per frame. The rendering takes 23.6
ms for Flame due to a large number of yarn control points and 16
ms for the other two patterns. The entire simulation and rendering
cost is less than 25 ms. Please refer to the accompanying video for
the whole animation sequence.

Full garment relaxation. Our system also supports yarn-level re-
laxation in the knit design pipeline, which has been the bottleneck

Stitch mesh

Mesh-based relaxation Our yarn-based relaxation

Zoom in

Fig. 17. Given the mesh-based relaxation, our knot-based optimiza-
tion can also be used for relaxing yarn geometry to obtain a physically
plausible appearance, as highlighted in the zoom-in view. The whole
relaxation only takes 2.5 ms on GPU.

in previous work [Yuksel et al. 2012]. As shown in Fig. 17, after
mesh relaxation, our yarn optimization takes only 2.5 ms to relax
the yarn to a visually plausible state. In contrast, it took several
hours, as reported in Yuksel et al. [2012].

Performance. Table 1 lists the performance of our framework,
highlighting its efficiency and scalability for both real-time simula-
tion and rendering. Knot-based optimization is implemented using
CUDA, and the resulting yarn control points are seamlessly trans-
ferred to the OpenGL rasterization pipeline via CUDA-OpenGL
interop for rendering. This fully GPU-based pipeline eliminates
overhead caused by GPU-CPU data transfers. Note that enabling
environmental lighting significantly increases rendering costs due
to the need to approximate the environment lighting for 16 SRBFs.
Additionally, generating all the textures required for rendering a
specific configuration of fiber takes approximately 5–7 mins on
CPU, depending on the fiber-level geometry complexity. On the
simulation side, 3 iterations for the Gauss-Newton scheme already
provide comparable results to full yarn-level simulation four orders
of magnitude faster than full yarn-level simulation.

Table 1. Statistics. All examples were timed on an Nvidia RTX 3090
for simulation and rendering time. Yarn CPs, fiber seg., and env. refer to
yarn control point, fiber segments, and environmental light. Screen size is
1920 × 1280 for the front six and 1300 × 1300 for the rest.

Model Fig. Yarn CPs # Fiber Seg. # w/ Env. Ren. (ms) Sim. (ms)

Flame 1 200K 29M Y 23.6 1.05
Photograph 4 172K 150M Y 31.1 1.58
Sleeve 11 44K – – – 1.03
Ribbing 19 38K 6.5M Y 15.7 1.02
Montague 10 52K 7.3M Y 16.5 1.02
Relaxation 17 319K 180M N 22.8 2.50
Glove 14 60K 60M N 3.0 –
Teapot (red) 15 59K 51M N 5.1 –
Teapot (green) 15 59K 55M N 8.1 –
Teapot (blue) 15 59K 61M N 7.3 –
Cable 16 130K 118M N 9.4 –
Cable 16 130K 96M Y 20.6 –

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Real-Time Knit Deformation and Rendering • 11

Ours Yarn-level simulation
Fig. 18. Our method relies on the underlying mesh to capture the
high-level deformation of the knit patch. However, for structures such
as Stockinette, our method alone cannot reproduce curl-up effects under
stretching, as demonstrated by yarn-level simulations.

7 LIMITATIONS
Our method can effectively produce knit appearances with fiber-
level detail under various lighting conditions with notable yarn-level
deformation. There is still a notable gap between our virtual results
and real-world imagery.

Simulation. Our knot-based optimization approximates 3D knit
structures as a net-like representation with a fixed topology, compro-
mising physical accuracy for real-time performance. Furthermore,
unlike previous data-driven methods [Sperl et al. 2021; Yuan et al.
2024], our method does not capture curl-up effects (Fig. 18) and flat-
tening behavior (Fig. 19) of the yarn-level structure under tension
since our 2.5D representation does not account for out-of-plane
forces. Lastly, while our method can be generalized to various stitch
types, such as increases and decreases, as shown in Fig. 10, and to
other single-layer planar fabric structures, including woven fabrics,
lace, and crochet, it also has inherent limitations. Specifically, our
current representation does not accommodate layered knit struc-
tures, such as cables, where stitches cross over each other to create
twisted or braided effects. Additionally, it is not suitable for fabric
structures with complex yarn placement that cannot be captured
solely through yarn contacts, such as the Cartridge Rib stitch, where
slipped yarns float across the back of a regular ribbing pattern.

Rendering. Our method retains common issues associated with
billboard rendering as we cannot achieve true radial changes when
physically rotating the yarn. Secondly, the fibers within the yarn
structure become denser and more compact when stretched. These
microstructural changes profoundly influence the macroscopic ap-
pearance. Specifically, stretched knits exhibit noticeable differences
in brightness and shininess compared to their relaxed state. How-
ever, due to the time required for texture generation, we cannot
reproduce this kind of light transport behavior in real time.

8 CONCLUSION
We have introduced a real-time framework that seamlessly inte-
grates yarn-level simulation and fiber-level rendering, delivering a

Ours Yarn-level simulation
Fig. 19. While the Ribbing patch with our yarn optimization and
fiber-level rendering under environmental lighting requires only 16.7
ms, our method is unable to capture the flattening behavior of the
yarn-level structure under tension.

high-fidelity yet efficient system for knitted structures. Our key con-
tributions are twofold. We proposed a novel 2.5D knot-based stitch
representation. Coupled with a highly parallelizable GPU optimiza-
tion, our system generates visually plausible yarn curve geometry
even as the underlying mesh undergoes deformation. Given yarn
control points from knot-based simulation, we introduce a GPU
rasterization pipeline incorporating novel decomposition strategies
to render yarn with fiber-level geometry, accommodating multiple
scattering effects and environmental lighting. Our simulator is light-
weight, highly parallelizable, and requires no pre-computed data,
while our rendering pipeline is at least three orders of magnitude
faster than existing methods while producing results nearly identi-
cal to ground truth. This comprehensive system is perfectly suited
for a variety of application scenarios, including knit pattern design
and animating full garments with detailed knit structures.

ACKNOWLEDGMENTS
Yin Yang acknowledges the funding support from NSF 2301040.

REFERENCES
Juan J. Casafranca, Gabriel Cirio, Alejandro Rodríguez, Eder Miguel, and Miguel A.

Otaduy. 2020. Mixing Yarns and Triangles in Cloth Simulation. Computer Graphics
Forum 39, 2 (2020), 101–110.

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, and Miguel A. Otaduy. 2014. Yarn-
level simulation of woven cloth. ACM Trans. Graph. 33, 6, Article 207 (Nov. 2014),
11 pages.

Gabriel Cirio, Jorge Lopez-Moreno, and Miguel A Otaduy. 2016. Yarn-level cloth
simulation with sliding persistent contacts. IEEE transactions on visualization and
computer graphics 23, 2 (2016), 1152–1162.

Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J. Koenderink. 1999.
Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1 (Jan. 1999),
1–34.

Xudong Feng, Huamin Wang, Yin Yang, and Weiwei Xu. 2024. Neural-Assisted Homog-
enization of Yarn-Level Cloth. In ACM SIGGRAPH 2024 Conference Papers (Denver,
CO, USA) (SIGGRAPH ’24). Association for Computing Machinery, New York, NY,
USA, Article 80, 10 pages.

Randima Fernando. 2005. Percentage-closer soft shadows. In ACM SIGGRAPH 2005
Sketches (Los Angeles, California) (SIGGRAPH ’05). Association for Computing
Machinery, New York, NY, USA, 35–es.

Eduard Gröller, René T. Rau, and Wolfgang Strasser. 1995. Modeling and Visualization
of Knitwear. IEEE Transactions on Visualization and Computer Graphics 1, 4 (Dec.
1995), 302–310.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Tao Huang, Haoyang Shi, Mengdi Wang, Yuxing Qiu, Yin Yang, and Kui Wu

Jonathan Hoffman, Matt Kuruc, Junyi Ling, Alex Marino, George Nguyen, and Sasha
Ouellet. 2020. Hypertextural Garments on Pixar’s Soul. In ACM SIGGRAPH 2020
Talks (Virtual Event, USA) (SIGGRAPH ’20). Association for Computing Machinery,
New York, NY, USA, Article 75, 2 pages.

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E. Hudson,
James McCann, and Jennifer Mankoff. 2019. KnitPicking Textures: Programming and
Modifying Complex Knitted Textures for Machine and Hand Knitting. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology (New
Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY,
USA, 5–16.

Jerry Hsu, Tongtong Wang, Zherong Pan, Xifeng Gao, Cem Yuksel, and Kui Wu. 2024.
Real-time Physically Guided Hair Interpolation. ACM Trans. Graph. 43, 4, Article 95
(July 2024), 11 pages.

Wenzel Jakob, Adam Arbree, Jonathan T. Moon, Kavita Bala, and Steve Marschner. 2010.
A radiative transfer framework for rendering materials with anisotropic structure.
ACM Trans. Graph. 29, 4, Article 53 (July 2010), 13 pages.

Chenfanfu Jiang, Theodore Gast, and Joseph Teran. 2017. Anisotropic elastoplasticity
for cloth, knit and hair frictional contact. ACM Trans. Graph. 36, 4, Article 152 (July
2017), 14 pages.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2008. Simulating knitted
cloth at the yarn level. In ACM SIGGRAPH 2008 Papers (Los Angeles, California)
(SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article
65, 9 pages.

Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2010. Efficient yarn-based
cloth with adaptive contact linearization. ACM Trans. Graph. 29, 4, Article 105 (July
2010), 10 pages.

Levi Kapllani, Chelsea Amanatides, Genevieve Dion, Vadim Shapiro, and David E. Breen.
2021. TopoKnit: A Process-Oriented Representation for Modeling the Topology of
Yarns in Weft-Knitted Textiles. Graph. Models 118, C (Nov. 2021), 19 pages.

Alexandre Kaspar, Liane Makatura, and Wojciech Matusik. 2019. Knitting Skeletons: A
Computer-Aided Design Tool for Shaping and Patterning of Knitted Garments. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Tech-
nology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery,
New York, NY, USA, 53–65.

Alexandre Kaspar, Kui Wu, Yiyue Luo, Liane Makatura, and Wojciech Matusik. 2021.
Knit sketching: from cut & sew patterns to machine-knit garments. ACM Trans.
Graph. 40, 4, Article 63 (July 2021), 15 pages.

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2016. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1, Article 1 (Dec. 2016), 26 pages.

Alexandr Kuznetsov, Krishna Mullia, Zexiang Xu, Miloš Hašan, and Ravi Ramamoorthi.
2021. NeuMIP: multi-resolution neural materials. ACM Trans. Graph. 40, 4, Article
175 (July 2021), 13 pages.

Jonathan Leaf, Rundong Wu, Eston Schweickart, Doug L. James, and Steve Marschner.
2018. Interactive design of periodic yarn-level cloth patterns. ACM Trans. Graph.
37, 6, Article 202 (Dec. 2018), 15 pages.

Logica. 2020. PaintKnit. [Online]. Available from: www.paintknit.com.
Fujun Luan, Shuang Zhao, and Kavita Bala. 2017. Fiber-Level On-the-Fly Procedural

Textiles. Computer Graphics Forum 36, 4 (2017), 123–135.
Yiyue Luo, Kui Wu, Tomás Palacios, and Wojciech Matusik. 2021. KnitUI: Fabricating

Interactive and Sensing Textiles with Machine Knitting. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 668, 12 pages.

Yiyue Luo, Kui Wu, Andrew Spielberg, Michael Foshey, Daniela Rus, Tomás Palacios,
and Wojciech Matusik. 2022. Digital Fabrication of Pneumatic Actuators with
Integrated Sensing by Machine Knitting. In Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association
for Computing Machinery, New York, NY, USA, Article 175, 13 pages.

James McCann, Lea Albaugh, Vidya Narayanan, April Grow,Wojciech Matusik, Jennifer
Mankoff, and Jessica Hodgins. 2016. A compiler for 3D machine knitting. ACM
Trans. Graph. 35, 4, Article 49 (July 2016), 11 pages.

Zahra Montazeri, Søren B. Gammelmark, Shuang Zhao, and Henrik Wann Jensen. 2020.
A practical ply-based appearance model of woven fabrics. ACM Trans. Graph. 39, 6,
Article 251 (Nov. 2020), 13 pages.

Zahra Montazeri, Chang Xiao, Yun Fei, Changxi Zheng, and Shuang Zhao. 2021.
Mechanics-Aware Modeling of Cloth Appearance. IEEE Transactions on Visual-
ization and Computer Graphics 27, 1 (Jan. 2021), 137–150.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive anisotropic remeshing
for cloth simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.

Vidya Narayanan, Kui Wu, Cem Yuksel, and James McCann. 2019. Visual knitting
machine programming. ACM Trans. Graph. 38, 4, Article 63 (July 2019), 13 pages.

Zhong Ren, Kun Zhou, Tengfei Li, Wei Hua, and Baining Guo. 2010. Interactive hair
rendering under environment lighting. ACM Trans. Graph. 29, 4, Article 55 (July
2010), 8 pages.

Andrew O. Sageman-Furnas, Albert Chern, Mirela Ben-Chen, and Amir Vaxman. 2019.
Chebyshev nets from commuting PolyVector fields. ACM Trans. Graph. 38, 6, Article

172 (Nov. 2019), 16 pages.
Shima Seiki. 2011. SDS-ONE Apex3. [Online]. Available from: http://www.shimaseiki.

com/product/design/sdsone_apex/flat/.
Georg Sperl, Rahul Narain, and Chris Wojtan. 2020. Homogenized yarn-level cloth.

ACM Trans. Graph. 39, 4, Article 48 (Aug. 2020), 16 pages.
Georg Sperl, Rahul Narain, and Chris Wojtan. 2021. Mechanics-aware deformation of

yarn pattern geometry. ACM Trans. Graph. 40, 4, Article 168 (July 2021), 11 pages.
Stoll. 2011. M1Plus pattern software. [Online]. Available from: http://www.stoll.com/

stoll_software_solutions_en_4/pattern_software_m1plus/3_1.
Hannah Twigg-Smith, Yuecheng Peng, Emily Whiting, and Nadya Peek. 2024a. What’s

in a cable? Abstracting Knitting Design Elements with Blended Raster/Vector Prim-
itives. In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing Ma-
chinery, New York, NY, USA, Article 62, 20 pages.

Hannah Twigg-Smith, Emily Whiting, and Nadya Peek. 2024b. KnitScape: Compu-
tational Design and Yarn-Level Simulation of Slip and Tuck Colorwork Knitting
Patterns. In Proceedings of the 2024 CHI Conference on Human Factors in Computing
Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New
York, NY, USA, Article 860, 20 pages.

Kui Wu, Xifeng Gao, Zachary Ferguson, Daniele Panozzo, and Cem Yuksel. 2018. Stitch
meshing. ACM Trans. Graph. 37, 4, Article 130 (July 2018), 14 pages.

Kui Wu, Hannah Swan, and Cem Yuksel. 2019. Knittable stitch meshes. ACM Transac-
tions on Graphics (TOG) 38, 1 (2019), 1–13.

Kui Wu, Marco Tarini, Cem Yuksel, James McCann, and Xifeng Gao. 2022. Wearable 3D
Machine Knitting: Automatic Generation of Shaped Knit Sheets to Cover Real-World
Objects. IEEE Transactions on Visualization and Computer Graphics 28, 9 (2022),
3180–3192.

Kui Wu and Cem Yuksel. 2017. Real-time fiber-level cloth rendering. In Proceedings
of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (San
Francisco, California) (I3D ’17). Association for Computing Machinery, New York,
NY, USA, Article 5, 8 pages.

Kui Wu and Cem Yuksel. 2019. Real-Time Cloth Rendering with Fiber-Level Detail .
IEEE Transactions on Visualization & Computer Graphics 25, 02 (Feb. 2019), 1297–
1308.

Chun Yuan, Haoyang Shi, Lei Lan, Yuxing Qiu, Cem Yuksel, Huamin Wang, Chenfanfu
Jiang, Kui Wu, and Yin Yang. 2024. Volumetric Homogenization for Knitwear
Simulation. ACM Trans. Graph. 43, 6, Article 207 (Nov. 2024), 19 pages.

Cem Yuksel, Jonathan M. Kaldor, Doug L. James, and Steve Marschner. 2012. Stitch
meshes for modeling knitted clothing with yarn-level detail. ACM Trans. Graph. 31,
4, Article 37 (July 2012), 12 pages.

Shuang Zhao, Fujun Luan, and Kavita Bala. 2016. Fitting procedural yarn models for
realistic cloth rendering. ACM Trans. Graph. 35, 4 (2016), 51:1–51:11.

J. Zhu, Z. Montazeri, J. Aubry, L. Yan, and A.Weidlich. 2023. A Practical and Hierarchical
Yarn-based Shading Model for Cloth. Computer Graphics Forum 42, 4 (2023), e14894.

Arno Zinke, Cem Yuksel, Andreas Weber, and John Keyser. 2008. Dual scattering
approximation for fast multiple scattering in hair. ACM Trans. Graph. 27, 3 (2008),
32.

Lara Zlokapa, Yiyue Luo, Jie Xu, Michael Foshey, Kui Wu, Pulkit Agrawal, and Wo-
jciech Matusik. 2022. An Integrated Design Pipeline for Tactile Sensing Robotic
Manipulators. In 2022 International Conference on Robotics and Automation (ICRA)
(Philadelphia, PA, USA). IEEE Press, New York, NY, USA, 3136–3142.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

www.paintknit.com
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.shimaseiki.com/product/design/sdsone_apex/flat/
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1
http://www.stoll.com/stoll_software_solutions_en_4/pattern_software_m1plus/3_1

	Abstract
	1 Introduction
	2 Related work
	3 Physics-aware Stitch Optimization
	3.1 Knot-based Yarn Representation
	3.2 Knot-based Yarn Optimization

	4 Yarn Rendering with Fiber-level Details
	4.1 Preliminary
	4.2 Rendering Pipeline
	4.3 Regular Fibers
	4.4 Flyaway Fibers
	4.5 Environmental Lighting

	5 Implementation details
	5.1 Preprocessing
	5.2 Runtime Pipeline

	6 Results
	6.1 Simulation
	6.2 Rendering
	6.3 Demos

	7 LIMITATIONS
	8 Conclusion
	Acknowledgments
	References

