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Abstract— Deformable robots are notoriously difficult to
model or control due to its high-dimensional configuration
spaces. Direct trajectory optimization suffers from the curse-
of-dimensionality and incurs a high computational cost, while
learning-based controller optimization methods are sensitive to
hyper-parameter tuning. To overcome these limitations, we hy-
pothesize that high fidelity soft robots can be both simulated and
controlled by restricting to low-dimensional spaces. Under such
assumption, we propose a two-stage algorithm to identify such
simulation- and control-spaces. Our method first identifies the
so-called simulation-space that captures the salient deformation
modes, to which the robot’s governing equation is restricted.
We then identify the control-space, to which control signals are
restricted. We propose a multi-fidelity Riemannian Bayesian
bilevel optimization to identify task-specific control spaces. We
show that the dimension of control-space can be less than 10 for
a high-DOF soft robot to accomplish walking and swimming
tasks, allowing low-dimensional MPC controllers to be applied
to soft robots with tractable computational complexity.

I. INTRODUCTION

As compared with rigid structures, soft materials pertain
a higher flexibility and a lower manufacturing cost (we refer
readers to [1] for a thorough overview). Indeed, the rigidity of
materials can significantly limit the mode of deformation, so
articulated robots oftentimes require precision servo motors
for actuation. Instead, soft robots utilize the material compli-
ance to conduct forces and induce deformations, which can
be controlled using low-cost pneumatic or cable-based actu-
ators. Over the years, we have witnessed soft robots exhibit
superior flexibility in certain manipulation tasks including
universal object grasping [2] and gait-adaptive navigation [3].
However, the number of robotic tasks accomplished by soft
robots is still incomparable to those accomplished by conven-
tional articulated robots, which is due to a lack of effective
soft robot control techniques. Sadly, almost all existing soft
robot hardware platforms rely on manually designed gaits to
accomplished specified tasks, while articulated robots can
utilize a row of general-purpose, automatic planning and
control algorithms such as rapid exploring random trees
(RRT) and model-predictive controllers (MPC) controllers.

To design an effective soft robot controller, an algo-
rithm has to conquer the curse-of-dimensionality. Indeed,
classical continuum theory [4] of elasticity assumes that
every infinitesimal soft tissue can deform independently
and its configuration space is infinite-dimensional. Modern
computational models, e.g. the finite element method (FEM),
discretize the configuration space into a finite-dimensional
functional space. However, the resulting dimension of the
discrete space can be at the level of hundreds or even

† indicates corresponding author. 1LightSpeed Studios, Tencent
({xifgao,kwwu,zrpan}@global.tencent.com). 2Department of Computer
Science, Zhejiang University.

thousands [5, 6, 7]. Although conventional planning and
control algorithms can be adopted after the discretization,
their computational cost is prohibitively high. For example,
the cost of MPC controller grows cubically [8] and that of
the optimal RRT algorithm grows exponentially [9] as the
increase of the dimensions in the configuration space.

On a parallel front, efforts have been made to design
automatic control algorithms for soft robots, which can be
classified into trajectory optimization techniques, shooting
methods, and learning-based algorithms. Trajectory opti-
mization techniques [10, 6] perform long-horizon planning
by directly optimizing the pose of the soft robot at sampled
time instances. As a result, their dimension of search space is
at least tens of thousands, leading to expensive computations.
Similarly, shooting methods [11, 12] formulate the receding-
horizon control problem as a local nonlinear optimization,
which can be solved via gradient-based methods. These gra-
dient information can be provided by learned [11] or analyt-
ically derived [12] differentiable dynamic models. However,
the computational cost of such gradient evaluation is still
polynomial in the dimension of the configuration space.
Finally, learning-based algorithms [13, 5, 14] represent the
controller (or a part of the controller) using a neural network,
which is then trained via reinforcement learning (RL). These
methods have achieve an unprecedented level of success on
navigation tasks, but they require excessive tuning of RL
hyper-parameters and reward signals.

Main Results: Inspired by the success of Reduced-Order
Modeling (ROM) [10], we propose a novel controller syn-
thesis method based on the low-dimensional assumption.
Specifically, we assume that, in order to faithfully model soft
robots, we only need to restrict its configuration space to a
low-dimensional subspace that captures the salient deforma-
tion modes, which is denoted as the simulation-space. We
further assume that, soft robots can accomplish locomotion
tasks via under-actuation, i.e., restricting the space of control
signals to a subspace of an even lower dimension, which is
denoted as the control-space. We identify these crucial spaces
in two stages. First, we use a conventional model analysis
technique [15] to identify the linear simulation-space and
construct the restricted dynamic system. We then identify the
bases of the control-space as a subset of the simulation-space
bases. To this end, we propose a multi-fidelity Riemannian
Bayesian Bilevel Optimization (RBBO) technique. Our low-
level optimizer is an MPC controller, which maximizes the
reward function of the task, while our high-level Bayesian
optimizer selects the control-space bases to maximize the
performance of low-level controller. Put together, our RBBO
algorithm can automatically discover the most effective de-
formation modes to accomplish a locomotion task.
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Fig. 1: Two locomotive tasks considered in our evaluation: A soft cross swimming (a); A soft quadruped walking (b), where
we show robot poses at different time instances.

We have evaluated our method on the walking and swim-
ming tasks of several soft robots. Our results show that
RBBO can significantly improve the controller performance
while restricting the dimension for control space to be less
than 10. Thanks to such a low dimension, both soft robot
simulation and restricted MPPI or MPC control signals can
be computed at a reasonable cost.

II. RELATED WORK

We consider soft robots as those made out of flexible
compliant materials. We review related works in soft robot
design, modeling, and control, with a focus on reduced-order
techniques.

A. Design

Unlike articulated robots where a general-purpose robot
design can be used to accomplished many tasks, existing
soft-robots are still heavily engineered towards one type of
tasks. Three tasks have been actively studied: positioning
& tracking [16], locomotion [3], and grasping [2]. Various
soft robot arms has been designed to accomplish end-effector
positioning and tracking tasks, including cable-driven [17]
or pneumatic [16] multi-segment soft structures. However,
to accomplish more challenging manipulation or locomotion
tasks, such as walking and grasping, soft robots must be
designed to interact with the environment. Shepherd et al. [3]
proposed a bio-inspired pneumatic crawling robot with multi-
chamber leg-like structures. Bern et al. [6] proposed a cable-
driven soft walking robot and used trajectory optimization to
automatically search for walking gaits. Several more recent
works [18, 14] show that many soft-robot designs can achieve
equally effective walking performance and evolutionary algo-
rithms can be used to automatically search for such designs.
Finally, many works have advocated grasping as a potential
application of soft robot arms. However, little control can be
applied to the grasping procedure, since most soft grippers [2,

19] only have one degree of freedom. These methods are
orthogonal to our work, which is focused on soft robot
modeling & control. We will show that our method can be
applied to robots of arbitrary shape and modality.

B. Modeling

Fast articulated robot simulation is a well-established tool
for robot design validation and model-based planning &
control. However, universally high-performance simulation is
still unavailable to soft robots due to the prohibitive compu-
tational overhead caused by high-dimensional configuration
spaces. A row of task- and design-specific kinematic and
dynamic soft robot models have been adopted. For multi-
segment soft robot arms [20] and steerable needles [21], the
Cosserat theory can be exploited to model robot as a thick-
rod with twisting and bending degrees of freedom. Some
soft robots consist of thin shell-like structures and can be
simulated using membrane dynamic models [22]. The vast
majority of simulation tools, including commercial softwares
like Ansys and COMSOL, are based on FEM (see [23]
for a thorough survey), incorporating various discretization
methods and material models. For example, Fang et al. [24]
modeled cable-driven soft arm via ARAP deformable model
to enable fast simulation via global-local solvers. Hu et al.
[7] simulated crawling robots using material point methods
with hybrid particle-grid representation. Cheney et al. [18]
uses a mass-spring-damper system to simulate heterogeneous
robots. All these FEM variants incur a computational cost
that is superlinear in the dimension of configuration spaces.

ROM can significantly boost the computational perfor-
mance of soft-robot simulation by restricting the configura-
tion space to a low-dimensional linear or nonlinear manifold.
These methods have been widely adopted to the modeling
of fluid [25] and deformable objects [26]. Recently, these
methods have been gradually used to model articulated and
soft robots. Chen and Posa [27] searched for ROM that



is best suited for legged robot locomotive tasks. Pan and
Manocha [10] used ROM as physics constraints in trajectory
optimization for soft robots. Sadati et al. [28] proposed
to use ROM for simulating soft continuum manipulators.
In comparison, our method follows these works and used
ROM for soft robot dynamics. However, we use two separate
subspaces for simulation and control, where the simulation-
space is analytically determined, while the control space is
automatically optimized.

C. Control
Gaits of most manually designed soft robots [2, 3] are

also hand-engineered and the underlying controller only
need to track the designed gaits. The automatic controller
design for soft robots emerge very recently. Cheney et al.
[18] assume robots consist of several classes of volume-
controllable blocks, whose locations are optimized to best
perform the walking task, but their controller is open-loop.
A prominent closed-loop controller is the receding-horizon
shooting method such as MPPI [29] and iLQR [8]. However,
these algorithms have not been largely used to control soft
robots, because their computational cost scales superlinearly
with the dimension of configuration space. Several methods
have been proposed to overcome this challenge. Hu et al.
[7] proposed a differentiable soft robot simulator allowing
gradient-based solution of associated optimization problem
of the shooting method. [13] used reinforcement learning
to optimize a parametric controller. However, the perfor-
mance of reinforcement learning is sensitive to both hyper-
parameters and controller representations. In parallel, Pan
and Manocha [10] showed that using ROM can effectively
reduce the cost of trajectory optimization for soft robots.
However, the degree of freedom (DOF) induced by ROM is
still larger than 50 for a typical soft robot, making is too
costly to apply shooting method. In this work, we further
apply underactuation and restrict the control signals to a
control-space of up to 5-dimensional, allowing MPC to be
efficiently applied to find soft robot walking and swimming
gaits.

III. PROBLEM STATEMENT

In this section, we formulate the problem of soft robot
control. We will frequently deal with restricted configuration
space of a soft robot. A soft robot takes up a volume Ω0 when
no external forces are exerted, which is known as the rest
shape, and we use x ∈ Ω0 to denote a continuous point in
the rest domain. Under external forces, it deforms to take
a volume Ω under the deformation function ϕ(x, t) ∶ Ω0 ↦
Ω. At the same time, a potential energy functional P[ϕ] is
induced by ϕ as:

P[ϕ] ≜ ∫
Ω0

ψ(∇ϕ)dx,

where ψ is the potential energy density. The dynamics of
a soft robot is governed by the Euler-Lagrangian dynamics
associated with the following Lagrangian function:

L[ϕ] = ρ
2
∫
Ω0

∥ρ̇∥2dx −P[ϕ],

where ρ is the density of robot. We denote the infinite
dimensional dynamic system as an functional:

ϕ̈ = f[ϕ, ϕ̇].

We simulate the soft robot using finite element method,
where ϕ is discretized using a volumetric mesh with N
nodes, and the vector of node positions is denoted as q ∈
R3N . Given q, the continuous function ϕ is approximated as:
ϕ(x, t) = B(x, t)q, where B(x, t) ∈ R3×3N is the vector of
finite-element shape functions. Plugging this approximation
into the weak-form dynamic system f , a finite-dimensional
discrete system can be represented as the following function
(see [4, 23] for its detailed derivation):

q̈ = f(q, q̇).

Being a computable model, the volumetric mesh typically
involves tens of thousands of nodes leading to a high cost
in time-integrating q via f .

A. Reduced-Order Modeling

ROM is an useful tool that allows users to discover salient
global deformation modes of a soft robot, while ignoring
small-scale local deformations. ROM also enables efficient
robot simulation by focusing the computation only on the
salient modes. A key difference between FEM and ROM
lies in the features of bases B. The FEM utilizes locally
supported B, where each element of B is non-zero only
within a small neighborhood around one node. Instead,
ROM assumes globally supported B so that an element can
represent a global deformation, allowing ROM to use a small
number of bases to represent salient deformation modes.

Although we could unify the theory of FEM and ROM by
replacing the bases, ROM is typically built on top of FEM.
This is because ROM relies on a reasonable set of bases to
capture the salient deformation modes, which are typically
derived by analyzing the deformation patterns of the FEM
system [26, 30, 15]. Therefore, we formulate ROM as a linear
subspace of B, denoted as the M -dimensional simulation-
space with linear bases matrix Br ∈ R3N×M and M ≪ N .
The configuration space of ROM is thus only M -dimensional
and the reduced configuration qr is related to q via q = Brqr.
Various techniques have been proposed [26, 30, 15] to further
restrict the dynamic system f to the simulation-space and we
denote the restricted function as:

q̈r = fr(qr, q̇r). (1)

The ROM can be time-integrated at a much lower cost. How-
ever, Equation (1) is still too costly to be used as a predictive
model for MPC. This is because the reduced dimension M
can still be larger than 50 as used by prior works [30, 15, 10],
which is much larger than conventional articulated robots.
Indeed, during each control loop with horizon H , a MPC
controller needs to perform HM evaluations of fr in order
to compute the state derivatives.



B. Contact and Actuation

In order for the soft robot to be actuated and interact
with environment, we follow prior work [10] and introduce
both internal force fr and external force fe, leading to the
following forced dynamic system:

q̈r = fr(qr, q̇r) +M−1
r (fe + fr), (2)

where Mr is the reduced mass matrix. The external force
fe is computed via the nonlinear complementary problem
(NCP). Specifically, for the ith FEM mesh node located at
B(xi, t)Brqr with rest state position being xi, we detect any
collisions between the node and environment. If a collision
is detected with contact normal ni, then a contact force fi is
applied on the ith node. To determine fi, we introduce the
following complementary constraint in reduced coordinates:

fe ≜ ∑
xi in contact

BT
r B(xi, t)T fi

q̇i,⊥ ≜ nTi B(xi, t)Br q̇r

q̇i,∥ ≜ (I − ninTi )B(xi, t)Br q̇r

0 ≤ q̇i,⊥ ⊥ nTi fi ≥ 0

0 = q̇i,∥ + λ
(I − ninTi )fi
∥(I − ninTi )fi∥

0 ≤ λ ⊥ µnTi fi − ∥(I − ninTi )fi∥ ≥ 0,

(3)

where µ is the frictional coefficient and λ is the tangential
force coefficient. The system of equation given by Equa-
tion (2) and Equation (3) can be solved using Newton’s
method to yield fe and time integrate qr. However, owning
to the dense FEM mesh, the number of contacts can be large
and exactly solving the NLP problem is intractable. Instead,
we use the staggered projection [31] as an approximate
solver, which alternatively updates the normal and tangential
component of fe via two convex programs.

C. Locomotion Control

The internal forces fi is actuator generated and the main
goal of our method is to design an algorithm that can
automatically and efficiently compute fi for the robot to
accomplish various locomotion tasks. Each locomotion task
is described by a reward function R(q, q̇) so that MPC can
be applied to solve the following optimization:

argmax
fn
r

H

∑
n=1

R(qn+1, q̇n+1)

s.t.
q̇n+1r − q̇nr

∆t
= fr(qn+1r , q̇n+1r ) +M−1

r (fe + fnr )

q̇n+1r ≜ q
n+1
r − qnr
∆t

,

(4)

leading to the standard receding-horizon feed-back control
algorithm. Here we use superscripts to denote timestep index
and ∆t is the timestep size. However, the naı̈ve application
of existing MPC algorithms such as [8] would involve at least
HM calls to the simulator for computing the state deriva-
tives ∂qn+1r

∂(qnr q̇
n
r )

via finite difference, leading to prohibitive

computational overhead.

IV. REDUCED-ORDER CONTROLLER DESIGN

Our controller design and optimization scheme is illus-
trated in Figure 2. Our goal is to design an efficient controller
that utilizes the low-dimensional nature of ROM. We observe
that many soft robots are highly redundant and under-
actuated. Therefore, we propose to further under-actuate
the ROM system by introducing an even lower-dimensional
control-space. We assume the control-space is a linear sub-
space of Br that is specified by the bases matrix Bc ∈ RM×C

with C ≪ M ≪ 3N . Therefore, the control force fc ∈ RC

is related to fr by the linear relationship: fr = Bcfc. The
design philosophy of control-space follows the same idea as
that of the simulation-space. Given an arbitrary robot, ROM
provides an automatic tool to discover the salient deformation
modes encoded in the globally supported bases Br. When
we are further given a locomotion task in the form of a
reward function R(q, q̇), our method provides an automatic
tool to discover the subspace of control signals, encoded in
the bases Bc, that can most effectively accomplish the task.

A. MPC in Control-Space

The bottleneck of applying iLQR [8] to ROM lies in
the HM calls to the simulator. Unfortunately, although our
control-space reduces the dimension of control signals, the
number of calls to the simulator is still at least H(M +C)
times for evaluating the state derivatives ∂qn+1r

∂(qnr q̇
n
r )

and

control derivatives ∂qn+1r

∂fn
c

for every n = 1,⋯,H . To utilize the
control-space and remove the dependency on M , we directly
compute the sensitivity of the trajectory with respect to the
control signal. Let us define the following shorthand notation:

Qr ≜ (q2r ⋯ qH+1r )T

Fc ≜ (f1c ⋯ fHc )
T

R(Qr) ≜
H

∑
n=1

R(qn+1, q̇n+1).

The Gauss-Newton method only evaluates the Jacobian ma-
trix ∇FcQr and uses the following rule to update the control
signal via the Newton-type iteration:

Fc ← Fc − α(∇FcQ
T
r ∇2

Qr
R∇FcQr)−1(∇QrR∇FcQr)T ,

where α is a step size parameter and we use the Gauss-
Newton approximation for the Hessian matrix. In addition,
the control signals cannot change abruptly, so we can further
regularize the control signal using a K − 1th order spline
curve with K control points denoted as: F̃c ≜ ( f̃1c ⋯ f̃Kc )

T
.

The control signal is then linearly related to F̃c as Fc =
SF̃c via an spline interpolation matrix S ∈ RHC×KC . The
Gauss-Newton method in this case only requires the Jacobian
∇F̃c

Qr leading to only HKC simulator calls. In practice,
this implies sampling KC threads in parallel. Another widely
used MPC controller is MPPI [29] and we can adopt MPPI in
our control-space by sampling KC trajectories and compute
F̃c from the reward-weight averaging of their control signals.
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Fig. 2: We illustrate the pipeline of our controller optimization algorithm for deformable objects. The equation of motion is restricted to a
low-dimensional space spanned by bases Br (brown). The control signal fc (red) is further restricted to a lower-dimensional control space
spanned by Bc (blue). Br is constructed analytically to capture the salient deformations as illustrated below each column, while Bc is
optimized to maximize the performance of the MPC Equation (4). The optimization is accomplished via the proposed RBBO Algorithm 1.

B. Bilevel Control-Space Optimization

The choice of control-space Bc is crucial to the perfor-
mance of the MPC algorithm. Automatically optimizing Bc

is much more difficult than choosing the simulation-space
Br. This is because prior works [26, 30, 15] have shown
that Br can be chosen by analyzing the potential energy.
However, the control-space can affect the entire optimization
process described in Equation (4), which is in turn related
to the behavior of the contact-rich dynamic system over
an entire control horizon. As a result, we cannot use the
gradient-based algorithm to optimize Bc as the contact
mechanism is non-differentiable and some MPC algorithm is
stochastic. Fortunately, since we assume the control-space is
a simulation-subspace, the size of Bc is rather small. Indeed,
we can assume that Bc is always an orthogonal matrix so
that all the valid Bc lies in the Stiefel Manifold St(M,C)
and since the order of bases can be aribitrary, we have
BcB

T
c lies in the lower-dimensional Grassmannian manifold

Gr(M,C). We formulate this challenging problem as the
following bilevel optimization:

argmax
Bc

R(Qr)

s.t. BcB
T
c ∈ Gr(M,C)

Fc ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

argmax
F̃c

R(Qr) −Λ(Qr, F̃c)

s.t. q̇n+1r −q̇nr
∆t

= fr(qn+1r , q̇n+1r ) +M−1
r (fe +Bcf

n
c ).

Note that the goal of our high- and low-level problem is
slightly different. The high-level solver aims at maximizing
the performance of MPC, which is described by the reward
function R(Qr). Our low-level MPC controller not only
solves the task but also ensures that the dynamic system
is stable and the control scheme is energy-efficient, so we
introduce the additional regularization term Λ(Qr, F̃c).

C. RBBO Algorithm

Solving the above bilevel optimization is computationally
challenging. Even a single call to the low-level problem
would involve running MPC over an entire trajectory of T

timesteps. We propose to adopt Bayesian optimization [32]
that utilizes the smoothness of objective function with respect
to Bc. Given a dataset D = {< Bi

c,Ri >} of past calls to the
low-level problem, the Bayesian optimization assumes that
the function R(Bc) follows a Gaussian process:

R(Bc) ∼ GP(Bc;D).

Using the Gaussian process, the optimizer can predicts
the MPC performance at any Bc as a normal distribution
with mean µ(Bc) and covariance σ(Bc), which is also
conditioned on the choice of a kernel function k(Bi

c,B
j
c , θ).

The kernel function determines the similarity between two
choices of Bc, where θ is some hyper-parameters. Most
kernel can also be written as a function k(d(Bi

c,B
j
c)) with

d being some distance metric. Since we merely require
BcB

T
c ∈ Gr(M,C), the Euclidean distance between Bi

c and
Bj

c is not a valid similarity measure. The idea of Riemannian
Bayesian optimization [32] lies in the use of Geodesic dis-
tance (an intrinsic metric) for d, denoted as dM. Although the
geodesic distance on the Grassmannian manifold is feasible
to compute [33], recent research [34] argues that intrinsic
metrics can violate the positive-definiteness of the kernel
and advocates the use of extrinsic metrics. Following this
observation, we embed Gr(M,C) into the M ×M ambient
space and use the Euclidean distance measure:

d(Bi
c,B

j
c) ≜ ∥Bi

c(Bi
c)T −Bj

c(Bj
c)T ∥,

and we use the radial kernel for k. Based on the prediction
of R(Bc), Bayesian optimizer chooses the next point by
maximizing the acquisition function, where we use the GP-
UCB function:

γ(Bc) ≜ µ(Bc) + β1/2σ(Bc),

where the first term exploits existing knowledge and the sec-
ond term encourages exploration, weighted by an appropriate
parameter β. We maximize γ(Bc) on the Grassmannian
manifold via the Riemannian-quasi-newton algorithm [35].

To further accelerate the optimization, we observe that, in
order to confirm a certain choice of Bc is “bad”, we do not



Algorithm 1: RBBO

Input: ROM dynamic model: Br, fr,Mr

Input: MPC module: MPPI or iLQR
Input: Task reward: R
Output: Bc

1: Sample initial dataset D′
2: Fit GP from D′
3: for i = 1,2,⋯,N do
4: Bi

c ← argmax
Bc

γ(Bc) s.t. BcB
T
c ∈ Gr(M,C)

5: Use BOCA to find T i

6: Use MPC to generate a T i-timestep trajectory
7: D′ ← D′⋃{< Bi

c, T
i,Ri >}

8: Fit GP from D′
9: Return Bi

c with i = argmax
i
Ri

need to run the entire T -timestep trajectory. Oftentimes, a
bad Bc will lead to sub-optimal performance of MPC at first
few timesteps, in which case we can terminate the trajectory
to save computation. This observation has been utilized in
Bayesian optimization [36] by introducing the multi-fidelity
mechanism. Specifically, we treat T as a continuous fidelity
level parameter, i.e. treating T as an additional parameter
when calling the low-level problem. Using a high-fidelity
estimation is more expensive but leads to more accurate
result, while a low-fidelity estimation is less expensive and
accurate, but provide information about results under higher
fidelity due to smoothness. To utilize such information from
low-fidelity estimation, RBBO incorporate the BOCA algo-
rithm [36]. Given an augmented dataset D′ = {< T i,Bi

c,Ri >
} with varying fidelity level, RBBO assumes the function
R(Bc, T ) follows a joint Gaussian process:

R(Bc, T ) ∼ GP(Bc, T ;D′),

where we use the separable kernel function:
k(Bi

c, T
i,Bj

c , T
j) = k(d(Bi

c,B
j
c))k(∣T i − T j ∣). After

finding the next evaluation point Bc, RBBO uses BOCA to
select the next fidelity level T i+1. The complete RBBO is
summarized in Algorithm 1.

V. EXPERIMENTS

Robot Task N M C Rinit R
⋆
R
⋆
/Rinit − 1

Cross Swim 623 20 3 2.24 5.43 142.21%
Cross Walk 623 20 3 0.66 4.28 544.32%
Beam Walk 426 20 3 1.34 4.52 236.91%

Quadruped Walk 1315 20 3 1.86 5.26 183.35%
Tripod Walk 1417 20 3 2.16 3.03 40.66%

TABLE I: From left to right: name of robot, locomotion task, full
space dimension, simulation subspace dimension, control subspace
dimension, the performance of identity baseline Rinit, the perfor-
mance of RBBO-optimized controller, and improvement.

We perform a series of comparative and ablation studies
to demonstrate the effectiveness of our controller design and
optimization scheme (refer to our video for visualization).
We implement our deformable object simulator in C++ and

we generate multiple trajectories in parallel under perturbed
control signals, which is the bottleneck of our MPPI or iLQR
algorithm. The RBBO algorithm runs in Python and we
use the Pymanopt library [37] to optimize the acquisition
function over the Stiefel manifold. All experiments are
performed on a single server with a 48-core AMD EPYC
7K62 CPU. As illustrated in Figure 1, we evaluate our
method on two locomotive tasks, walking and swimming,
using a set of soft robots with drastically different modal-
ities and degrees of freedom as summarized in Table I.
For the swimming task, we model the fluid drag forces
using the heuristic force model proposed in [10]. In both
tasks, our reward function is the direction moving distance,
i.e., R(qn+1, q̇n+1) = dT q̇n+1∆t, where d is the desired
moving direction. Further, our low-level regularization term
Λ(Qr, F̃c) penalizes robot orientation changes and any mo-
tions orthogonal to d. Λ(Qr, F̃c) also involves a small control
regularization term.

Fig. 3: The average computational cost of iLQR optimization
performed during each iteration, plotted against the dimension of
control subspace C.

Fig. 4: The performance of controller restricted to the first C
bases of Br for the cross walk task.

A. Computational Cost Versus Performance

We first demonstrate the significantly reduced compu-
tational cost due to the use of low-dimensional control
subspace. In Figure 3, we plot the average computational cost
of one round of iLQR optimization against the dimension of
control subspace C. It is not surprising that the cost grows
superlinearly with respect to C. Indeed, MPC only exhibits
nearly interactive performance when C ≤ 20. Although our
simulator is not highly optimization, the speedup due to



Fig. 5: The convergence history of BO and BOCA for our five benchmark problems (sampled reward function value at each iteration
plotted against computational time).

Fig. 6: For the soft-cross, we run RBBO for the robot to walk
along 8 directions. The performance improvement is plotted as a
polar graph. Our method brings at least 46.45% percent and at most
853.50% of performance improvement.

Fig. 7: The performance of controller plotted against a perturbation
of the walking direction. Our method achieves 80% performance
when the walking direction perturbation is less than ±10○.

further low-level optimization is limited. Moreover, we show
that controlling all the reduced bases is unnecessary. In
Figure 4, we plot the performance of controller (measured by
R) when the control signal is restricted to the first C bases of
Br, i.e., Bc is an identity matrix. We see that the performance
improvement levels off after the first 4 dimensions. This
observation strongly suggests the use of a low-dimensional
control subspace, so we choose to use C = 3 for all our
examples. Further, since the performance of BO can degrade
significantly in high-dimensional search spaces, we always
limit M = 20.

B. Performance of BO Versus BOCA

We run both BO and BOCA for 10 hours for each bench-
mark and compare their results with the identity baseline,
i.e., using the first C bases of Br by setting Bc to an

identity matrix. Note that the identity baseline is already a
reasonable initial guess, since it controls the C most salient
deformable modes. In Figure 5, we profile the performance
of RBBO over our five benchmarks problems, by plotting
the reward function value sampled at each iteration against
computational time for fairness of comparison. In Table I,
we show that RBBO can improve the controller performance
by 544.32% at most and 229.49% on average, as compared
with the identity baseline. These results essentially imply
that the most effective control modes is different from the
most salient deformation modes. On the downside, BOCA
does not bring a distinguishable benefit over BO. We can
run more iterations of BOCA within the same amount of
computational time, but the overall reward improvement is
comparable.

C. Task-Sensitivity of Controller

We finally demonstrate the robustness of our method by
analyzing the sensitivity of our method to the change of
tasks. To this end, we run RBBO for the soft-cross to
walk along 8 different directions. As illustrated in Figure 6,
our method consistently improve the controller performance
by at least 46.45% and at most 853.50%, as compared
with the identity baseline. Further, we evaluate the gen-
eralization ability for an optimized Bc to other tasks. To
this end, we optimize Bc for the robot to walk along a
fixed direction, and we then apply the same Bc to slightly
different walking directions by perturbing the desired angle
of direction. In this case, the performance is plotted against
the angle of perturbation in Figure 7. Our method achieves
80% performance when the direction perturbation is less
than ±10○, as compared with the unperturbed version of our
approach, while its performance quickly decreases as the
perturbation further increases. We further observe that the
controller performance differs drastically with the task, i.e.,
walking direction. This is presumably because the simulation
subspace is task-biased and not involved in our optimization
pipeline. The joint optimization of simulation- and control-
spaces is beyond the scope of this work.

VI. CONCLUSION

We propose a novel controller design and optimiza-
tion scheme for soft robots. To circumvent the curse-of-
dimensionality, we propose a two-stage dimension reduction
method. We first use conventional reduced-order modeling
tools to find a simulation subspace, we then introduce an
even lower-dimensional control subspace. We propose to
optimize the control subspace via Bayesian optimization for



maximizing the controller performance. Our results show
that our proposed scheme achieves a consistent performance
improvement for various soft robots with drastically different
modalities. As the major limitation of current work, our
method cannot learn a universal control subspace that can
generalize to all tasks. In the future, we are considering
deep learning models that can predict near-optimal control
subspaces, given a certain task. Our method further assumes
the ROM simulator accurately models the behavior of the
soft robot, while the error introduced by a ROM simulator
is beyond the scope of this study. In real world robotic
applications, it is an essential future work to analyze the
ROM simulator error and its impact on the simulation and
prediction of soft robot hardware.
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