
Proxy Asset Generation for Cloth Simulation in Games
ZHONGTIAN ZHENG, LightSpeed Studios, China
TONGTONG WANG, LightSpeed Studios, China
QIJIA FENG, LightSpeed Studios, USA
ZHERONG PAN, LightSpeed Studios, USA
XIFENG GAO, LightSpeed Studios, USA
KUI WU, LightSpeed Studios, USA

Rest pose Frame 5 Frame 35 Frame 65

𝑀0
visual 𝑀0

proxy 𝑀5
visual 𝑀5

proxy 𝑀35
visual 𝑀35

proxy 𝑀65
visual 𝑀65

proxy

Fig. 1. Given the input visual mesh𝑀0
visual for the skirt, containing complex geometry and multiple layers, we propose a pipeline to automatically

create a single-layer low-poly mesh𝑀0
proxy with an extremely small number of vertices (128 vertices in this case). Additionally, we optimize the

skinning weights by differential skinning with several well-designed loss functions, so we get plausible skinned visual mesh,𝑀∗visual, driven by the
simulated proxy mesh,𝑀∗proxy, at frame 5, 35, and 65 of a dancing motion sequence. Please see the supplemental video for the full animation.

Simulating high-resolution cloth poses computational challenges in real-time
applications. In the gaming industry, the proxy mesh technique offers an al-
ternative, simulating a simplified low-resolution cloth geometry, proxy mesh.
This proxy mesh’s dynamics drive the detailed high-resolution geometry,
visual mesh, through Linear Blended Skinning (LBS). However, generating a
suitable proxy mesh with appropriate skinning weights from a given visual
mesh is non-trivial, often requiring skilled artists several days for fine-tuning.
This paper presents an automatic pipeline to convert an ill-conditioned high-
resolution visual mesh into a single-layer low-poly proxy mesh. Given that
the input visual mesh may not be simulation-ready, our approach then sim-
ulates the proxy mesh based on specific use scenarios and optimizes the
skinning weights, relying on differential skinning with several well-designed
loss functions to ensure the skinned visual mesh appears plausible in the
final simulation. We have tested our method on various challenging cloth
models, demonstrating its robustness and effectiveness.

CCS Concepts: • Computing methodologies→Mesh geometry models.

Additional Key Words and Phrases: Cloth Simulation, Proxy Mesh, Differen-
tiable Optimization

Authors’ addresses: Zhongtian Zheng, zhongtzheng@tencent.com, LightSpeed Studios,
Shenzhen, Guangzhou, China; Tongtong Wang, tongttwang@tencent.com, LightSpeed
Studios, Shenzhen, Guangzhou, China; Qijia Feng, victorfeng@global.tencent.com,
LightSpeed Studios, Irvine, CA, USA; Zherong Pan, zrpan@global.tencent.com, Light-
Speed Studios, Seattle, WA, USA; Xifeng Gao, xifgao@global.tencent.com, LightSpeed
Studios, Seattle, WA, USA; Kui Wu, kwwu@global.tencent.com, LightSpeed Studios,
Los Angeles, CA, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2024/7-ART73 $15.00
https://doi.org/10.1145/3658177

ACM Reference Format:
Zhongtian Zheng, Tongtong Wang, Qijia Feng, Zherong Pan, Xifeng Gao,
and Kui Wu. 2024. Proxy Asset Generation for Cloth Simulation in Games.
ACM Trans. Graph. 43, 4, Article 73 (July 2024), 12 pages. https://doi.org/10.
1145/3658177

1 INTRODUCTION
Cloth simulation adds unprecedented visual realism to immersive
games at the cost of an extremely high computational burden. Game
developers must balance visual fidelity and performance to ensure
the game runs smoothly on various hardware configurations. To
this end, a popular technique is using a proxy mesh, which is a low-
res version of the cloth geometry used for fast physical simulation
in real-time. Given a simulated configuration of the proxy mesh,
its deformation, encoded as vertex positions and normals, is then
transferred to the corresponding vertices of a high-res visual mesh
through Linear Blended Skinning (LBS). The transferred visual mesh
is then rendered to create the final visual representation.
Although the proxy mesh technique can effectively balance vi-

sual fidelity and performance, creating a suitable proxy mesh with
appropriate skinning weights is a non-trivial, labor-intensive task.
In this work, our goal is to design a computer-assisted procedure
to automate the design of proxy mesh. There are two major chal-
lenges to this end: First, although mesh simplification techniques
can be used to create low-res meshes from high-res visual meshes,
these methods fail to create proxy meshes because our input visual
meshes are ill-conditioned. Indeed, our visual meshes contain intri-
cate folds, wrinkles, disconnected components, layered structures,
and non-manifold surfaces. Unfortunately, for plausible simulation
results, the output proxy mesh must have elements with uniformly
high quality without any ill conditions. Second, for the simulation to

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

HTTPS://ORCID.ORG/0009-0009-4714-1760
HTTPS://ORCID.ORG/0009-0005-6585-3009
HTTPS://ORCID.ORG/0009-0002-8880-2982
HTTPS://ORCID.ORG/0000-0001-9348-526X
HTTPS://ORCID.ORG/0000-0003-0829-7075
HTTPS://ORCID.ORG/0000-0003-3326-7943
https://orcid.org/0009-0009-4714-1760
https://orcid.org/0009-0005-6585-3009
https://orcid.org/0009-0002-8880-2982
https://orcid.org/0000-0001-9348-526X
https://orcid.org/0000-0003-0829-7075
https://orcid.org/0000-0003-3326-7943
https://doi.org/10.1145/3658177
https://doi.org/10.1145/3658177
https://doi.org/10.1145/3658177

73:2 • Zheng, et al.

achieve real-time performance, the proxy mesh must be extremely
simplified. Assigning vertex weights for the proxy mesh poses an-
other significant challenge. An ideal skinning weight should main-
tain an overall similarity between the low- and high-res meshes and
preserve the fine details, which demands a unique blend of technical
expertise, artistic judgment, and an in-depth understanding of how
characters move and deform. Artists are tasked with meticulously
adjusting these weights, repeatedly testing animations, and making
refinements until they achieve the desired level of mesh quality and
deformation fidelity.

To the best of our knowledge, no existing method simultaneously
achieves the aforementioned goals, leaving artists to endure days of
trial and error to fine-tune proxy meshes. In this paper, we introduce
an automatic pipeline to convert ill-conditioned visual cloth into
an extremely simplified, high-quality, single-layer, low-poly proxy
mesh with corresponding skinning weights. Our method comprises
two stages: proxy mesh generation and optimization of skinning
weights. In the first stage, we extract an iso-surface from an un-
signed distance field around the visual mesh. This double-layered
mesh, containing an excess of vertices, is overly complex for use as
a proxy mesh. To address this, a guide graph is constructed through
ray casting, and an Integer Linear Programming (ILP) formulation is
employed to preserve only a single side around thin shell structures.
Subsequently, Voronoi clustering uniformly simplifies the mesh into
the proxy mesh with a specified vertex count. Given that the input
visual mesh may not be simulation-ready, our approach proceeds to
simulate the proxy mesh based on specific use scenarios. We then
optimize the skinning weights for a simplified LBS model, using
differential skinning supported by several well-designed loss func-
tions to ensure that the visual mesh appears plausible in the final
simulation. Inspired by [Thiery and Eisemann 2018], we introduce
an As-Rigid-As-Possible (ARAP) term to preserve the shape of the
visual mesh, a collision term to prevent self-collision, and an attach-
ment loss to connect close but disconnected components. We have
thoroughly tested our approach using various cloth models from
real-world game projects. Through the evaluation, we emphasize
the remarkable effectiveness and efficiency of our pipeline, high-
lighting its potential for significant advancements in the field. In
summary, our contributions encompass the following:
• An automatic pipeline for generating extremely low-poly proxy
meshes from ill-conditioned high-res visual meshes.
• A skinning weight optimization pipeline through differentiable
skinning with several well-designed losses.
• A comprehensive evaluation of the effectiveness and efficiency of
the proposed approach.

2 RELATED WORK
This section briefly reviews previous works on mesh simplification
methods, cloth simulation, and skin deformation.

Mesh Simplification. Mesh simplification techniques [Khan et al.
2022] can be classified as local and global methods. Local methods
selectively eliminate elements, including vertices [Schroeder et al.
1992] and edges [Hoppe et al. 1993], based on specific conditions
or the minimization of certain metrics, such as the Quadric Error
Metrics (QEM) [Garland and Heckbert 1997], visibility [Zhang and

Turk 2002], and appearance-preserving [Cohen et al. 1998]. Ani-
mated meshes can also be simplified through local methods [Kircher
and Garland 2005; Landreneau and Schaefer 2009], but outputs of
which usually have a bad mesh quality that prevents them from
being used by the physical-based simulator. Inspired by [Cohen-
Steiner et al. 2004] and [Li and Nan 2021], today’s researchers have
mainly focused on global re-meshing techniques for superior ro-
bustness, e.g., instant meshes [Jakob et al. 2015]. Overall, generating
extremely low-poly mesh still poses a major challenge to tradi-
tional mesh reduction techniques. To this end, researchers turn to
voxelization-based remeshing techniques [Calderon and Boubekeur
2017; Chen et al. 2023; Mehra et al. 2009]. In the game industry,
these low-poly meshing techniques have been used to generate
LOD mesh [Gao et al. 2022] and occluder [Wu et al. 2022]. Unfor-
tunately, none of these works generate low-poly, simulation-ready
meshes along with skinning weights. From another perspective,
mesh simplification can be a reconstruction problem. Indeed, many
point cloud reconstruction algorithms [Bernardini et al. 1999; Chen
et al. 2022b; Chen and Zhang 2021; Long et al. 2023; Zhou et al.
2023] and mesh repair methods [Chen et al. 2023; Zheng et al. 2023]
simultaneously eliminate various defects in the mesh, but these
methods focus on reconstructing fine details instead of simplifying
the mesh. On the other hand, the introduction of unsigned distance
fields (UDFs) [Chen et al. 2022a; Chibane et al. 2020; Liu et al. 2023;
Ren et al. 2023; Wang et al. 2022] enable a new learning-based repre-
sentation to depict both closed and open surfaces, but these methods
often necessitate a specified dataset for optimal performance, which
is unavailable in our problem domain. Some methods also aim at
direct surface extraction from UDFs [Guillard et al. 2022; Hou et al.
2023; Zhou et al. 2023]. However, these techniques require heuristic
initial guesses to guide the extraction of open surfaces, leading to a
lack of robustness.

Cloth Simulation. Physics-based cloth simulation has been a pop-
ular topic in the graphics community for decades. The implicit
Euler integration is used to simulate cloth robustly with large time
steps [Baraff and Witkin 1998; Terzopoulos et al. 1987] while in-
troducing excessive numerical damping. Liu et al. [2013] treat the
implicit Euler integration as an energy minimization problem for
the mass-spring cloth. With a similar idea, Projective Dynamics
adds support for various hyperelastic materials [Bouaziz et al. 2014]
and frictional contacts [Ly et al. 2020]. Recent efforts are focus on
efficient cloth simulation on GPU, such as parallel Position-Based
Dynamics (PBD) [Macklin et al. 2016; Müller et al. 2007a], Chebyshev
acceleration [Wang 2015], parallel randomized Gauss-Seidel [Fratar-
cangeli et al. 2016] geometric multigrid scheme [Wang et al. 2018],
and Galerkin multigrid scheme [Xian et al. 2019], While GPU-based
cloth simulation has made significant strides in terms of speed, en-
abling the real-time simulation of hundreds of thousands of faces, it
still falls short of meeting the demands of video games, which only
have a few milliseconds budget for simulation. Recently, Zhang et al.
[2022] have provided an efficient simulation method to preview
quasi-static states of cloth for high-fidelity garment design. In con-
trast, our proposed technique focuses on the creation of low-poly
cloth assets for real-time applications.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

Proxy Asset Generation for Cloth Simulation in Games • 73:3

(a)𝑀visual (b)𝑀iso (c)𝑀proj (d)𝑀single (e)𝑀proxy

Fig. 2. Proxy mesh generation pipeline: Given the input visual mesh𝑀visual (a), we use marching cubes to extract an iso-surface from UDF,
denoted as𝑀iso (b). Subsequently, we project𝑀iso onto𝑀visual to enhance alignment, leading to𝑀proj (c). We then extract𝑀single by solving an
ILP, which is refined into a single-layer proxy mesh𝑀proxy (e). The front and back sides of the face are highlighted in grey and blue.

Skinning Deformation. Skinning deformation is a crucial tech-
nique in character animation for video games and 3D animation to
balance fidelity and performance. In this paradigm, the 3D visual
mesh is driven by an underlying skeleton based on given vertex
weights. Although these vertex weights are assigned by artists man-
ually, researchers recently automated this process through geomet-
ric [Bang and Lee 2018; Dionne and de Lasa 2013; Jacobson et al.
2011; Kavan et al. 2007; Kavan and Žára 2005; Thiery and Eisemann
2018], data-driven [James and Twigg 2005; Le and Deng 2014; Loper
et al. 2015], and physics-based [Kim et al. 2017; Mukai and Kuriyama
2016; Si et al. 2015] methods. Besides their applications in character
animations, the skinning technique has also been applied to use
bones or low-res meshes [Kavan et al. 2011] to drive detailed cloth
animations [Feng et al. 2008, 2010]. Recently, NeuroSkinning [Liu
et al. 2019] uses a large garment dataset meticulously hand-painted
by artists for training and utilizes graph convolution techniques
to predict vertex weights. Meanwhile, RigNet [Xu et al. 2020] has
introduced a neural rigging solution capable of jointly predicting
both the skeletal structures and the corresponding skin weights.
In the pre-learning era, classical methods primarily use geometric
attributes like geodesic distance and Laplacian energy to determine
vertex weights, which is unreliable in producing plausible skin-
ning. Thiery and Eisemann [2018] present a robust LBS weights and
skeleton joint optimization method based on ARAP deformations.
However, their method does not alter the skeleton topology and
relies on a well-conditioned mesh topology to perform the ARAP
computations. On the other hand, data-driven and learning-based
methods demand a simulation-ready cloth model or a larger dataset
painted by artists as a prerequisite, none of which are available in
our case.

3 PROXY MESH GENERATION
Our pipeline consists of two main stages. In this section, we detail
our first stage, where we generate the proxy mesh, denoted as
𝑀proxy, from the visual mesh𝑀visual. In our next section, we propose
an optimization-based method to generate the skinning weights.

The steps of our first stage are summarized in Fig. 2. In particular,
our method first extracts the isosurface𝑀iso from the UDF of𝑀visual
(Sec. 3.1). Then, we project𝑀iso onto𝑀visual to enhance alignment,
resulting in𝑀proj (Sec. 3.2). After that, we build a guide graph on
𝑀proj, on which we solve an ILP to extract the single-side surface
𝑀single (Sec. 3.3), which is simplified into the final proxy mesh
𝑀proxy.

3.1 Isosurface Extraction
The input𝑀visual may contain non-manifold shapes, layered struc-
tures, and disconnected components. To be robust to these artifacts,
we follow prior work [Chen et al. 2023] and adopt a voxel-based
remeshing. We construct a UDF from𝑀visual with voxel size 𝐷/𝑁𝑣 ,
where 𝑁𝑣 is a user-defined voxelization resolution parameter and
𝐷 is the maximum length of𝑀visual’s bounding box. The isosurface
𝑀iso is then extracted using the marching cube algorithm [Lorensen
and Cline 1987] with a distance threshold set at one voxel size, i.e.
𝐷/𝑁𝑣 , as it is a small iso-value required to extract a watertight
iso-surfaces from the UDF to containing𝑀visual.

3.2 Mesh Projection
To further enhance the conformity to𝑀visual, we formulate an op-
timization problem to obtain a projected mesh 𝑀proj that tightly
encloses𝑀visual. In particular, we begin with initializing each vertex
in𝑀proj as 𝑣𝑖proj ← 𝑣𝑖iso. Then, we find the nearest point 𝑝𝑖visual on
𝑀visual for each vertex 𝑣𝑖proj and minimize the following energy:

∑︁
𝑖

𝑣𝑖proj − 𝑝𝑖visual

2 + 𝜆𝐿 ∑︁
𝑖

𝑣𝑖proj − 1
|N (𝑖) |

∑︁
𝑗 ∈N(𝑖)

𝑣
𝑗

proj

2

, (1)

whereN(𝑖) denotes the 1-ring neighboring vertices of 𝑣𝑖iso. The first
term guides 𝑣𝑖proj towards 𝑝

𝑖
visual, while the second term is a Lapla-

cian regularization that encourages smoothness and element uni-
formity. Through optimization using the vector Adam solver [Ling
et al. 2022],𝑀proj is refined to better conform to𝑀visual. Note that
we do not enforce self-intersection-free in the optimization, as our

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

73:4 • Zheng, et al.

proxy generation and simulation pipeline do not mandate a self-
intersection-free proxy mesh.

3.3 Single Layer Extraction
While𝑀proj is both topologically and geometrically benign to down-
stream processing, the watertight nature of the marching cubes algo-
rithm generates excessive surface layers encapsulating open surfaces
or thin shell structures. To further simplify the mesh, we propose
a novel, graph-cut-like algorithm to extract a single-layer mesh,
𝑀single. We show that our modified graph-cut algorithm can be for-
mulated as an ILP, lending itself to efficient off-the-shelf solvers. A
typical procedure is illustrated in Fig. 3. We first discuss our method
to construct a graph on𝑀proj and then formulate our optimization
problem and the solution.

𝑀visual 𝑀proj 𝑀single

Fig. 3. Single layer extraction: from left to right, the input visual
mesh 𝑀viusal, the projected mesh 𝑀proj (orange) containing 𝑀viusal
tightly, and the single-layer mesh (green)𝑀single extracted via ILP.

Graph Construction. The key to our approach lies in the extraction
of the correspondence relationship between pairs of vertices on the
opposite sides of𝑀proj, which encloses thin structures of𝑀visual, so
we can remove the vertices from one side. Note that this procedure
does not need to be accurate and consistent, as our ILP formulation
will clean up the inaccuracy. We define that a pair of two vertices
are opposite to each other if:
• Their distance is within 2𝐷/𝑁𝑣 ;
• Their normal is in opposite direction 𝑛 𝑗proj · 𝑛

𝑖
proj < −1 + 𝜖𝑜 .

Indeed, we define a valid pair of opposite vertices that should be
within 2𝐷/𝑁𝑣 of each other after mesh projection, as we extract
the isosurface with iso-value at 𝐷/𝑁𝑣 , and exhibit similar normal
directions. Here 𝜖𝑜 is some user-defined threshold. Based on these
observations, we cast a ray from each vertex 𝑣𝑖proj along its negative
normal direction −𝑛𝑖proj to find the closest hit point 𝑝𝑖hit− on𝑀proj
andwe define the vertices of the triangle containing 𝑝𝑖hit− as opposite
vertices, i.e.:

V𝑖
𝑜 ≜

{
𝑣
𝑗

proj ∈ 𝑇 (𝑝
𝑖
hit−)

���∥𝑣 𝑗proj − 𝑣𝑖proj ∥ < 2𝐷/𝑁 & 𝑛
𝑗

proj · 𝑛
𝑖
proj < −1 + 𝜖𝑜

}
.

We then construct the graph as 𝐺 ≜ (Vproj, E), where Vproj
comprises all the vertices. The edge set E is formed by combining
set Eproj, which contains all edges derived from 𝑀proj, with an
additional supplementary edge set E𝑜 . This supplementary set E𝑜
is specifically designed to connect each 𝑣𝑖proj with every 𝑣 𝑗proj ∈ V

𝑖
𝑜 .

This procedure is illustrated in Fig. 4.

𝑣0proj

𝑝0hit−

𝑣1proj 𝑣2proj

Fig. 4. Opposite vertex detection: For each vertex, say 𝑣0proj, we shot
a ray along the negative normal direction (green) to find the closest
hit point 𝑝0hit. The triangle vertices containing 𝑝

0
hit is then treated

as potential opposite vertices if they satisfy our two conditions. In
this example, we define:V0

𝑜 = {𝑣1proj, 𝑣
2
proj}. We then insert one edge

(dashed blue) into our graph, connecting each pair of opposite vertices.

Minimization Problem. Based on the graph𝐺 , we solve a graph-
cut-like minimization problem for a consistent set of labels 𝑙𝑖 ∈
{0, 1} for each vertex 𝑣𝑖proj. 𝑙

𝑖 = 1 implies 𝑣𝑖proj is on the extracted
single layer of the proxy mesh and vice versa. Our optimization
takes the following form:

argmin
𝑙𝑖 ∈{0,1}

𝜆𝑠𝐸𝑠 + 𝜆𝑜𝐸𝑜 , (2)

with 𝜆• being the corresponding weights, where 𝐸𝑠 enforces the
smoothness of label assignments, while 𝐸𝑜 encourages that only one
label is selected between each pair of opposite vertices. Following
the standard formulation of graph-cut, our smoothness energy is
formulated as:

𝐸𝑠 ≜
∑︁

𝑖 𝑗∈Eproj
𝑤
𝑖 𝑗
𝑠 I[𝑙𝑖 ≠ 𝑙 𝑗], (3)

where I is the indicator function: I[0] = 0, I[1] = 1 and 𝑤𝑖 𝑗
𝑠 is

the cost for edge 𝑖 𝑗 being non-smooth. We define our weights as
𝑤
𝑖 𝑗
𝑠 ≜ 1− (max (|𝜅𝑖 |, |𝜅 𝑗 |)/𝜅)4 with 𝜅𝑖 being the approximate mean

curvature around 𝑣𝑖proj, computed by locally fitting a quadric func-
tion [Gatzke and Grimm 2006] and 𝜅 ≜ max

𝑣
𝑗

proj∈V
𝑗

proj
|𝜅 𝑗 | is the

maximum absolute curvature for normalization. As a result, edges
with lower curvature values are assigned larger weights, making
them more likely to be consistent, while edges with higher curva-
ture values are assigned smaller weights, which are potential layer
boundaries.
Our second term 𝐸𝑜 intends to preserve the opposite labels be-

tween a pair of vertices in E𝑜 , so as favoring the preservation of only
one side and discourages simultaneous preservation or removal of
both sides, defined as:

𝐸𝑜 ≜
∑︁

𝑖 𝑗∈E𝑜
I[𝑙𝑖 = 𝑙 𝑗] + 𝜆biasI[𝑑𝑖 ≠ 𝑑 𝑗 & (𝑙𝑖 − 𝑙 𝑗) ≠ sign(𝑑𝑖 − 𝑑 𝑗)]

𝑑𝑖 ≜

{
∥𝑣𝑖proj − 𝑝

𝑖
hit+ ∥ if 𝑝𝑖hit+ exists

∞ otherwise
,

where 𝑑𝑖 is the distance from 𝑣𝑖proj to its first hit point 𝑝
𝑖
hit+ along its

positive normal 𝑛𝑖proj. Our first term simply encourages that exactly

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

Proxy Asset Generation for Cloth Simulation in Games • 73:5

one of the opposite vertices be selected, while the second term biases
the solution towards keeping the outer layer around𝑀visual instead
of the inner layer when 𝑑𝑖 ≠ 𝑑 𝑗 , as the ray from the outer layer
along the normal direction is more likely to hit nothing, thereby
𝑑𝑖 = ∞.

ILP Formulation. Our objective function resembles that of a graph-
cut segmentation problem, with each objective function term tak-
ing the following 𝐸𝑖 𝑗• (𝑙𝑖 , 𝑙 𝑗). Regretfully, we cannot utilize their
polynomial-time algorithm due to the violation of the regularity
condition: 𝐸𝑖 𝑗𝑜 (0, 0) + 𝐸

𝑖 𝑗
𝑜 (1, 1) ≰ 𝐸

𝑖 𝑗
𝑜 (1, 0) + 𝐸

𝑖 𝑗
𝑜 (0, 1) [Kolmogorov

and Zabin 2004]. Therefore, we propose to formulate our problem
as a standard ILP as discussed by Komodakis and Tziritas [2007].
Specifically, we introduce additional continuous variables: 𝑙𝑖 𝑗00,11,10,01
and transform the objective function term into:

𝑙
𝑖 𝑗

00𝐸
𝑖 𝑗
• (0, 0) + 𝑙

𝑖 𝑗

11𝐸
𝑖 𝑗
• (1, 1) + 𝑙

𝑖 𝑗

10𝐸
𝑖 𝑗
• (1, 0) + 𝑙

𝑖 𝑗

01𝐸
𝑖 𝑗
• (0, 1), (4)

and introduce the additional constraints:
𝑙
𝑖 𝑗

00 + 𝑙
𝑖 𝑗

01 = 1 − 𝑙𝑖 , 𝑙
𝑖 𝑗

10 + 𝑙
𝑖 𝑗

11 = 𝑙
𝑖 ,

𝑙
𝑖 𝑗

00 + 𝑙
𝑖 𝑗

10 = 1 − 𝑙 𝑗 , 𝑙
𝑖 𝑗

01 + 𝑙
𝑖 𝑗

11 = 𝑙
𝑗 .

(5)

Although the number of binary variables is large, the above problem
can be solved very efficiently in practice using off-the-shelf ILP
solvers such as Mosek [ApS 2019].

3.4 Simplification
After obtaining the single layer mesh 𝑀single, we further simpli-
fied it until the user-defined desired vertex count 𝑁𝑡 is reached, to
which end we adopt the Voronoi-diagram-based technique [Valette
and Chassery 2004]. Specifically, we cluster vertices in𝑀single into
a Centroidal Voronoi Diagram with 𝑁𝑡 groups. Then, 𝑀proxy is
extracted from the centroid of neighboring clusters, followed by
removing non-manifold faces and splitting non-manifold vertices.
This approach outputs our uniformly meshed surface𝑀proxy with
the specified number of vertices.

4 SKINNING WEIGHT OPTIMIZATION
Given 𝑀proxy generated from the previous stage, our subsequent
stage generates LBS weights to create a plausible skinned 𝑀visual
from the pre-simulated𝑀proxy. Unlike previous data-driven weight
generation techniques such as [Liu et al. 2019], where the visual
mesh needs to be simulation-ready, our method deals with an input
visual mesh that might contain geometric ill-conditions, causing it
to be non-simulation-ready. Alternatively, we propose to formulate
it as an inverse problem, which could be solved via differentiable
programming. Given that𝑀proxy is well-conditioned, aka, manifold,
uniformly meshed, and simulation-ready surface, we run cloth sim-
ulation on𝑀proxy and sample a dataset of frames. We then utilize
differentiable LBS to optimize several loss functions to ensure that
the reconstructed frames of animated 𝑀visual appear plausible and
consistent with 𝑀proxy. We use superscript 𝑡 to denote the frame
index of both meshes, and 𝑡 = 0 corresponds to the rest pose.

Standard LBS techniques blend the translation and rotation as-
sociated with each bone, but estimating local rotations for each
vertex of the proxy mesh in real-time incurs additional computa-
tional costs. Therefore, we employ a simplified LBS formulation that

considers only translations. In particular, our simplified LBS formu-
lation dictates that the 𝑖th vertex of𝑀visual should be reconstructed
as:

𝑣
𝑖,𝑡

visual = 𝑣
𝑖,0
visual +

∑︁
𝑗∈B(𝑖)

𝑤𝑖 𝑗 (𝑣 𝑗,𝑡proxy − 𝑣
𝑗,0
proxy), (6)

where B(𝑖) represents the set of related proxy vertex indices influ-
encing visual vertex 𝑖 . The weight𝑤𝑖 𝑗 determines the influence of
each vertex on the transformation, which is further assumed to be
a convex combination, aka., 𝑤𝑖 𝑗 ≥ 0 and

∑
𝑗∈B(𝑖) 𝑤

𝑖 𝑗 = 1. Note
that although we utilize a simplified LBS, our weight optimization
framework can be extended to standard LBS or Dual Quaternion
Skinning (DQS). In such cases, however, the runtime cloth simula-
tor must also be enhanced to model and integrate the governing
equations for additional rotational degrees of freedom over time.

Data Preparation. We assume B(𝑖) is fixed and only optimize
𝑤𝑖 𝑗 . At rest pose, we adopt k-nearest neighbors (kNN) to find the
corresponding B(𝑖) for each 𝑣𝑖,0visual. We then simulate𝑀proxy using
Position Based Dynamics (PBD) [Müller et al. 2007b] and generate a
set of frames, from which we sample 𝑁 frames at regular intervals
to form our dataset. Specifically, we employ two types of springs
in our simulation. The first type is used along each edge of𝑀proxy
to provide stretch resistance, while the second type is connecting
non-shared vertices of each face pair with springs to offer bending
resistance. The stiffness parameters for these springs are manually
set to match those used in our runtime simulation.

Skinning Weight Optimization. After the generation of frames,
we optimize the skinning weights by minimizing the following loss:

argmin
𝑤𝑖 𝑗

𝜆𝑟𝐿𝑟 + 𝜆𝑐𝐿𝑐 + 𝜆𝑎𝐿𝑎 (7)

𝑠 .𝑡 .

{
𝑤𝑖 𝑗 ≥ 0 ∀𝑤𝑖 𝑗∑

𝑗∈B(𝑖) 𝑤
𝑖 𝑗 = 1 ∀B(𝑖)

, (8)

with 𝜆• being the corresponding weights, where our first term
enforces the smoothness of 𝑀visual, which uses an As-Rigid-As-
Possible (ARAP) energy [Sorkine and Alexa 2007] to ensures the
approximate non-stretchable material properties of𝑀visual:

𝐿𝑟 ≜
𝑁∑︁
𝑡=1

∑︁
𝑖

min
𝑅
𝑖,𝑡
𝑟

∑︁
𝑗∈N(𝑖)

(𝑣𝑖,𝑡visual − 𝑣 𝑗,𝑡visual) − 𝑅𝑖,𝑡𝑟 (𝑣𝑖,0visual − 𝑣 𝑗,0visual)

2 ,
where 𝑅𝑖,𝑡𝑟 is the local rotation matrix for 𝑣𝑖,𝑡visual. We use our second
term collision energy to reduce collision between two cloth layers.
To this end, we use the k-nearest neighbors in the initial state of
𝑀visual rather than local connectivity:

𝐿𝑐 ≜
𝑁∑︁
𝑡=1

∑︁
𝑖

min
𝑅
𝑖,𝑡
𝑐

∑︁
𝑗∈K (𝑖)

(𝑣𝑖,𝑡visual − 𝑣 𝑗,𝑡visual) − 𝑅𝑖,𝑡𝑐 (𝑣𝑖,0visual − 𝑣 𝑗,0visual)

2 ,
where K(𝑖) is the k-nearest neighbors of 𝑣𝑖,0visual and 𝑅

𝑖,𝑡
𝑐 is the ro-

tation matrix. The main difference between 𝐿𝑟 and 𝐿𝑐 lies in the
selection of vertex pairs. In 𝐿𝑟 ,N(𝑖) represents the 1-ring neighbors
of vertex 𝑣𝑖visual based on the topology of 𝑀visual and are used to
preserve its local shape. In the second equation, K(𝑖) identifies the
k-nearest neighbors of 𝑣𝑖visual according to the geometry of𝑀visual.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

73:6 • Zheng, et al.

We useK(𝑖) to prevent penetration among spatial close vertices. Fi-
nally, we found that for ill-conditioned visual meshes, geometrically
nearby but topologically disconnected vertices are supposed to be
distance-preserving. We thus introduce a final attachment energy
of the following form:

𝐿𝑎 ≜
𝑁∑︁
𝑡=1

𝑉 𝑡
visual − (𝐼 − 𝐾)𝑉

𝑡
visual

2 , (9)

where 𝑉 𝑡
visual is the concatenation of all vertex positions of𝑀visual

at frame 𝑡 and 𝐼 − 𝐾 is the weighted average over the k-nearest
neighbors defined as:

𝐾𝑖 𝑗 ≜


1 if 𝑖 = 𝑗

− (∥𝑣𝑖,0visual−𝑣
𝑗,0
visual ∥+𝜖𝑧)

−1∑
𝑘∈K (𝑖) (∥𝑣𝑖,0visual−𝑣

𝑘,0
visual ∥+𝜖𝑧)−1

if 𝑗 ∈ K(𝑖)

0 otherwise

, (10)

where the weights are designed such that two vertices are close to
each other if they are so at the rest pose. Based on the proximity of
vertices in the initial state, the closer the vertices are in the initial
state, the greater the attachment strengths should be used in 𝐿𝑎 , as
indicated by the value of 𝐾𝑖 𝑗 .
To solve the constrained optimization above, we introduce sur-

rogate parameters 𝑠𝑖 𝑗 and re-define:𝑤𝑖 𝑗 ≜ |𝑠𝑖 𝑗 |/∑𝑗∈B(𝑖) |𝑠𝑖 𝑗 |. We
solve the optimization iteratively using AdamW solver [Loshchilov
and Hutter 2017] in PyTorch with the new unconstrained decision
variables 𝑠𝑖 𝑗 . During each iteration, we employ singular value de-
composition (SVD) to estimate 𝑅𝑖,𝑡𝑟 and 𝑅𝑖,𝑡𝑐 .

5 RESULTS
We implement our pipeline in Python. All experiments are per-
formed on a computer with a 12th Gen Intel(R) Core (TM) i9-12900K
16-core Processor at 3.2 GHz, 256 GB of RAM, and an NVIDIA
GeForce 3090 GPU with 24 GB of memory. To generate basic poses,
we use PBD in Nvidia PhysX [NVIDIA 2021]. The ILP problem is
efficiently solved by off-the-shelf software [ApS 2019].

Parameters Study. The voxelization resolution 𝑁𝑣 and the tar-
get proxy mesh vertex count 𝑁𝑝 play pivotal roles in balancing
between preserving details and managing the complexity of the
resulting proxy mesh. Smaller values of 𝑁𝑣 ensure the preservation
of the fundamental shape of 𝑀visual, while larger 𝑁𝑣 values cap-
ture more details and distinctly delineate parts of 𝑀visual. On the
other hand, smaller 𝑁𝑝 values are advantageous for real-time sim-
ulation, although extremely low values may struggle to represent
intricate structures due to the need for uniformmeshing. Conversely,
larger 𝑁𝑝 values offer a better representation of structures but may
introduce runtime computational burdens. The impacts of these
parameters are demonstrated in Fig. 5. In our experiments, we set
𝑁𝑝 = 128 based on rules of thumb in game development, where
mobile platforms typically support 256 bones for LBS. Additionally,
we set 𝑁𝑣 = 32 for the remaining experiments.

Dataset. We conducted a series of experiments to evaluate the
proposed method using a dataset comprising 100 distinct clothing
items as shown in Fig. 6, some of which are from [miHoYo 2020].
All the inputs and our proxy meshes can be found in supplementary

𝑀visual

𝑁𝑣

𝑁𝑝
𝑀proxy

Fig. 5. Voxelization resolution 𝑁𝑣 and target proxy mesh vertex
count 𝑁𝑝 : 𝑁𝑣 from front to back, 32, 64, and 128, controlling the
details and categorization of single layers. 𝑁𝑝 from right to left, 128,
1024, 8192, and 65536, controlling the desired size of the uniform mesh.

materials. The dataset provides a comprehensive representation
of various categories and in-game situations. For proxy mesh gen-
eration, we conducted a comparative analysis with several state-
of-the-art mesh extraction methods, including MeshUDF [Guillard
et al. 2022], LevelSetUDF [Zhou et al. 2023], and DCUDF [Hou et al.
2023]. Although these SOTA methods are designed to extract the
mesh surface, our final goal is to generate the extremely low-poly
mesh as the proxy mesh. Thus, in our comparison, we utilize these
methods first to generate the single layer mesh 𝑀single and then
compare the𝑀proxy generated from them in Sec. 5.1. For MeshUDF,
we used the same marching cube resolution 323 as ours for mesh
generation. For LevelSetUDF, we uniformly sampled 100k points
for each mesh as input and used two grid sizes 2563 and 323, the
default in LevelSetUDF and ours, respectively. The DCUDF uses a
pre-trained multilayer perceptron (MLP) to represent the UDF in
the original paper; however, its training requires tens of minutes
to hours. In our experiment, we compute the unsigned distance
field discretized in a 2563 grid, as we already have the explicit mesh
geometry, and our UDF is more accurate than their trained UDF.
We tested both DCUDF default resolution of 2563 and projection
parameter 𝜆1 = 2000 and our tuned parameters (resolution at 323
and 𝜆1 = 200). Subsequently, we employed the same Voronoi clus-
tering method to simplify these meshes with a target vertex count
of 128 as ours does. The resulting statistics are collected in Table 1,
and we pick eight examples to demonstrate the issue of the existing
methods in Fig. 17.

Fig. 6. A collection of 100 distinct clothing items from games and the
low-poly proxy mesh generated by our method.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

Proxy Asset Generation for Cloth Simulation in Games • 73:7

Table 1. Statistics of 100 models in Fig. 6. Comp# and B-loop# denote
the number of components and boundary loops, respectively. Note that
DCUDF has up to 20 trials as their method relies on a random seed,
while only one attempt is needed for each model for other methods.

Success Comp# B-loop# HD LFD Time
MeshUDF 323 100% 2.1 3.8 0.28 4.6e3 0.3s
LevelSetUDF 323 100% 15.3 15.7 0.59 1.6e4 424.7s
LevelSetUDF 2563 100% 1.8 2.3 0.63 7.1e3 491.2s
DCUDF 323 74% 1.1 1.4 0.35 4.7e3 40.8s
DCUDF 2563 75% 2.4 3.4 0.33 4.5e3 82.1s
Ours 323 100% 1.0 2.0 0.22 3.6e3 8.4s

5.1 Proxy Mesh Evaluation
HD and LFD. We utilize two qualitative metrics, Hausdorff dis-

tance (HD) and light-field distance (LFD), to evaluate the output
quality compared to the input. Due to the lack of connectivity in
the single-layer mesh, LevelSetUDF often fails to produce a result
even close to the input after simplification. MeshUDF, which uses
a heuristic strategy to extract the single-layer mesh, cannot han-
dle complex cases well. “Tassel” in Fig. 17 shows MeshUDF could
be seriously disrupted when the gradient of the UDF is complex.
Employing graph cuts guided by random initial seeds, DCUDF may
segment the double layers improperly and even fail to produce a
valid segment for complex models within the maximum of 20 trials.
In “Scarf”, DCUDF cannot well extract the single layer and either
miss the left side of the input (323) or duplicate it (2563). In summary,
our method outperforms all listed state-of-the-art techniques.

𝑀input 𝑀proj 𝑀single 𝑀proxy

Fig. 7. Intermediate results of three examples: Our pipeline is
able to handle challenging inputs with a diverse range of topologies.

Intermediate Results. Fig. 7 illustrates the intermediate results of
three examples. The process begins with isosurface extraction and
mesh projection, resulting in𝑀proj that tightly encloses𝑀input to
ensure a close approximation of the original geometry. Then, an
ILP-based method robustly extracts a single-layer structure 𝑀single
from𝑀proj. This structure,𝑀single, is then simplified to𝑀proxy while
preserving essential geometric features.

Component and Boundary Loop Numbers. Generally, we expect
the output proxy mesh to be the single component with fewer holes.
However, both MeshUDF and LevelSetUDF may produce multiple
disconnected components and holes due to the challenges in locat-
ing the 0-level set of the input. Additionally, DCUDF might struggle
to segment double layers correctly depending on the random initial
guess, resulting in unnecessary components and holes. In contrast,
our method consistently generates proxy meshes as a single com-
ponent with an average of 2.0 boundary loops, underscoring the
robustness of our approach. It’s worth noting that while our results
do not exhibit self-intersection, our proxy generation and simula-
tion pipeline do not mandate a self-intersection-free proxy mesh.
Detection and resolution of self-intersection are typically disabled
in real-time applications, such as games, for performance reasons.

Comparison with DCUDF [Hou et al. 2023]. Our method follows a
similar pipeline as DCUDF but differs in solving an ILP problemwith
a novel opposite energy 𝐸o instead of utilizing graph cut to extract
the single layer surface. In DCUDF, faces are randomly initialized
with keep/removal labels, and a graph cut problem with smooth
energy is solved to optimize the face label, aiming tomatch the initial
label while minimizing smooth loss. However, DCUDF results are
significantly influenced by the initial guess, and the smooth energy
alone proves inadequate for separating one from two layers in shell
structures, a common occurrence in cloth, as demonstrated in Fig. 8.
On the contrary, our opposite energy 𝐸o enforces differences in
labels between opposite pairs and cannot be incorporated into the
graph cut. Additionally, as mentioned in [Hou et al. 2023], DCUDF
requires multiple initial guess attempts and does not guarantee
finding a valid cut within the given number of trials. Table 1 shows
that, given 20 trials, DCUDF achieves only a three-quarters success
rate.

Input DCUDF Single Our Single

Fig. 8. Example of single layer extraction:DCUDF cannot produce
valid single layers using graph cut with smooth energy only, while our
method can extract the single layer mesh with the same resolution of
323.

60.1%

24.3%

11.6%

4.1
1%

ILP
Projection
Build Graph
Isosurface

Fig. 9. Time breakdown

Time Usage. As our method solves
an ILP formulation, it takes more
time to extract the single layer than
MeshUDF, which employs a heuristic
strategy for single-layer mesh extrac-
tion. Fortunately, the average process
time of our whole proxy mesh gener-
ation pipeline is less than 10 seconds.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

73:8 • Zheng, et al.

In particular, ILP optimization and projection occupy almost two-
thirds and one-quarter of the computation time, respectively, as
shown in Fig. 9.

Mesh Quality. As our resulting proxy meshes need to be used in
the simulation, mesh quality is an important metric for predicting
the performance of the application. Thanks to the Voronoi-diagram-
based simplification, we achieve satisfactory quality in terms of
four common qualitative metrics, min face angle, edge ratio, aspect
ratio, and radius ratio. The mean and standard deviation values
are as follows: (47.9, 6.6), (0.78, 0.11), (0.76, 0.13), and (0.93, 0.085),
respectively. We plot the histogram in Fig. 10.

0 20 40 60
0%

5%

10%

0 0.5 1
0%

5%

10%

0 0.5 1
0%

5%

10%

0 0.5 1
0%

10%

20%

30%
Min Face Angle (degrees) Edge Ratio Aspect Ratio Radius Ratio

Loading [MathJax]/extensions/MathMenu.js
Fig. 10. Distribution of qualitative measures for our resulting
proxy meshes: min face angle, edge ratio, aspect ratio, and radius
ratio [Shewchuk 2002].

Optional Surface Carving. While our primary goal is to simplify
the expression of𝑀visual, it is desirable for artists to have the option
of preserving the original separated parts in𝑀proxy so that they can
move freely, as illustrated in Fig. 11. To accommodate this preference,
we project𝑀visual to𝑀single to create a 2D signed distance field on
the surface. Subsequently, we carve out the surface along the isoline
at a user-defined threshold 𝜖carved, resulting in𝑀carved. This option
is left to the artists and is turned off by default.

𝑀visual 𝑀single 𝑀carved 𝑀proxy

Fig. 11. Example of surface carving:After generating𝑀single from
𝑀visual, 𝑀visual is projected to 𝑀single to create a 2D signed distance
field on the surface, which is extracted as 𝑀carved. Lastly, 𝑀carved is
simplified as𝑀proxy.

5.2 Skinning Weights Evaluation
Data Collection & Weights Optimization. We generate 200 frames

of simulation data for skinning weight optimization for each proxy
mesh. We set the proxy mesh with the highest 5% vertices fixed
and the rest vertices are blown by the wind with random direc-
tion and strength. The data generation takes an average of 0.54
seconds per proxy mesh. The weights optimization uses AdamW
optimizer [Loshchilov and Hutter 2017] with a learning rate of 10−3
and a maximum of 200 epochs, which takes 9 minutes on average.

Ablation Studies. We assess the effectiveness of our losses by
comparing the visual mesh driven by skinning weights optimized
with and without ARAP loss, collision loss, and attachment loss. In
Fig. 12, without 𝐿𝑟 , the belt lacks smoothness, and without 𝐿𝑐 , the
belt exhibits self-collision. Conversely, the skinning weights opti-
mized with all the losses produce satisfactory results. In Fig. 13, two
components, dart and knot, are affixed to the visual mesh. However,
in the absence of attachment loss 𝐿𝑎 , these components separate
in the skinned visual mesh during significant proxy mesh defor-
mation. On the contrary, the skinning weights optimized with our
attachment loss ensure a tight attachment.

𝑀0
visual 𝑀𝑖

proxy 𝑀𝑖
visual w/o 𝐿𝑟 𝑀𝑖

visual w/o 𝐿𝑐 𝑀𝑖
visual w/ 𝐿𝑎 ,𝐿𝑐

Fig. 12. Ablation study on ARAP and collision loss: Given the
input mesh𝑀0

visual, the proxymesh is simulated at the pose𝑀𝑖
proxy. The

absence of our ARAP loss 𝐿𝑟 results in a non-smooth belt (highlighted
in red). Without our collision loss 𝐿𝑐 , the belt exhibits self-collision.
The optimized skinning weights with our attachment loss 𝐿𝑟 and 𝐿𝑐
ensure a smooth belt without collisions even under substantial proxy
mesh deformation.

𝑀0
visual 𝑀𝑡

proxy 𝑀𝑡
visual w/o 𝐿𝑎 𝑀𝑡

visual w/ 𝐿𝑎

Fig. 13. Ablation study on attachment loss: Given the input mesh
𝑀0
visual, the proxy mesh is simulated at the pose𝑀𝑡

proxy. Without our
attachment loss 𝐿𝑎 , the dart is detached from the knots (highlighted in
red), while the skinning weights optimized with our attachment loss
𝐿𝑎 make the dart and knots attached tightly even under large proxy
mesh deformation.

Validation. We first validate our optimized weights by blowing
the proxy mesh in a direction not encountered in data collection
and scrutinizing the shape of the skinned visual mesh. The sup-
plementary video, featuring 20 randomly selected models, serves
as a visual testament to the efficacy of our differential skinning
optimization framework. Fig. 15 demonstrates one of them. It is
important to note that while our results exhibit generalization to
unforeseen scenarios, in production practice, we can pre-simulate
most scenarios that happened in games for better data coverage.
As the visual mesh is usually not simulatable, we cannot sim-

ulate it and compare the shape directly. Instead, to validate our
pipeline, we generate two proxy meshes with 128 vertices and 1024

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

Proxy Asset Generation for Cloth Simulation in Games • 73:9

Artist manually crafted weights Ours
Fig. 14. Comparison with the result crafted by artist manually: Left, despite 4 hours of artistic labor, the skinning appears clumpy and
spiky; right, our approach yields a smoother and more plausible result in just 14 minutes. The skinning weights are visualized on the visual mesh
colored based on the bone index. A lighter color indicates a smaller bone impact.

Proxy w/ 128 vertices Proxy w/ 1024 vertices

𝑀𝑖
proxy 𝑀𝑖

visual 𝑀
𝑗
proxy 𝑀

𝑗

visual

Fig. 15. Validation: Given the same visual mesh as input, we choose
the simulated proxy mesh with 128 and 1024 vertices under similar
deformation at frame 𝑖 and 𝑗 as𝑀𝑖

proxy and𝑀
𝑗
proxy, respectively. Our

optimized skinning weights can provide consistent results, while the
one with 1024 vertices has more details.

vertices from the same visual mesh. As shown in Fig. 15, our skin-
ning weights can provide consistent results, while the one with 1024
vertices has more details.

Complex Motion. We further validate our optimized skinning
weights under complex motions. In particular, we extract a motion
sequence for the waist joint from a dance routine, which includes
movements such as spinning, twisting, and shaking. As shown
in Fig. 1, our losses ensure that the skinned visual mesh maintains
a plausible appearance. Please see the supplementary video for the
full animation.

User Study. To further validate the effectiveness of our weight
optimization, we conducted an experiment with an artist with over
a decade of experience in crafting assets for games and film. Specifi-
cally, we provided the proxy mesh of the “Scarf” model, as shown
in Fig. 2, and tasked them with manually painting the skinning
weights, following industry standards for creating skinned meshes.
The weight painting is a process of trial and error. The artist meticu-
lously painted the weights, exported the model to the Unreal Engine,
and subjected it to simulation to observe how the visual mesh re-
sponded to the skinning. The process is tedious and time-consuming
and is neither trivial nor intuitive. Fig. 14 shows the results crafted
by the artist for 4 hours. Although the visual mesh roughly follows
the proxy mesh movement, the skinning result is still clumpy and

Jo
in
to

pt
.

O
ur
s

𝑀0
visual 𝑀0

proxy 𝑀90
visual 𝑀90

proxy

Fig. 16. Comparison with joint optimization: Given the same
input mesh, joint optimization based on edge decimation (Top) yields
ill-posed proxy mesh. While our method (Bottom) produces uniform
proxy meshes with natural deformations.

spiky, and distant from a production-ready state, while our result
is much more plausible and takes only 14 minutes. We also visu-
alize the skinning weights on the visual mesh, which are colored
according to the corresponding bone index. Our color map demon-
strates a smooth transition, whereas manually adjusted weights
exhibit drastic changes in the transitional areas. It is worth noting
that we deployed this demo on a Samsung S20 mobile phone with
an SD865 CPU. It takes 0.86 ms to simulate the proxy mesh with
128 vertices in one PBD iteration with Unreal Engine Chaos Cloth,
which highlights the application scenarios of our framework.

Comparison with Joint Optimization. To validate our pipeline for
separately optimizing proxy mesh geometry and skinning weights,
we develop a joint optimization framework that iteratively simplifies
𝑀single while simultaneously optimizing skinning weights. In each
iteration, we first optimize the skinning weights following Eq. 7.
Then, we collapse the edge of the proxy mesh using a sum of quadric
energies from all visual vertex 𝑖 influenced by proxy vertex 𝑗 at each

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

73:10 • Zheng, et al.

frame 𝑡 , defined as follows:

𝐸 𝑗,𝑡 (𝑣) =
∑︁
𝑖

(𝑣𝑖 𝑗,𝑡)𝑇𝑄𝑖,𝑡

visual𝑣
𝑖 𝑗,𝑡 + 𝑣𝑇𝑄 𝑗,𝑡

proxy𝑣 𝑠.𝑡 . 𝑗 ∈ B(𝑖)

where 𝑣 = [𝑣 ; 1] represents the vertex 𝑣 in homogeneous form
and 𝑣𝑖 𝑗,𝑡 = 𝑣

𝑖,𝑡

visual − 𝑤
𝑖 𝑗
(
𝑣
𝑗,𝑡
proxy − 𝑣

)
denotes the new visual ver-

tex position when moving 𝑣 𝑗,𝑡proxy to 𝑣 . 𝑄𝑖,𝑡

visual and 𝑄
𝑗,𝑡
proxy are the

corresponding quadric matrices. The first term accounts for the
quadratic energy derived from the visual mesh, as suggested by
[Landreneau and Schaefer 2009]. The second term introduces a reg-
ularization component for the proxy vertex 𝑣 𝑗,𝑡proxy that does not
affect the visual mesh. We collapse the edge in 𝑀proxy with the
lowest energy by contracting two edge vertices to the midpoint with
summed skinning weight. Unfortunately, the non-uniform distribu-
tion of vertices in the simplifiedmesh poses challenges in optimizing
skinning weights effectively and results in unnatural deformations
during the simulation (see Fig. 16).

6 CONCLUSION
We have presented an automatic pipeline for generating extremely
low-poly proxy meshes from ill-conditioned high-res visual meshes
containing non-manifold shapes, layered structures, and discon-
nected components. Given the proxy mesh generated from our
pipeline, we have proposed a skinning weight optimization frame-
work to ensure the skinned visual mesh appears plausible in the
final simulation through differentiable skinning with several novel
losses. Lastly, we demonstrate a comprehensive evaluation of the
effectiveness and efficiency of our approach in a dataset with 100
cloth models used in the game industry.

Limitations and Future Works. While the Voronoi-diagram-based
technique for simplification can produce a uniform proxy mesh,
it may struggle to preserve the input boundary while represent-
ing intricate structures when 𝑁𝑝 is extremely low. In future work,
we aim to enhance the method by incorporating local operations
such as edge collapse and flip to improve boundary preservation.
Additionally, introducing continuous collision detection during pro-
jection to prevent self-intersection could be an interesting future
direction. While our current approach assumes the cloth with a
non-stretchable material model for the simulation, future efforts
will explore optimization strategies for accommodating stretchable
inputs, using the generalization of ARAP method [Thiery and Eise-
mann 2018]. Another promising avenue is to leverage our method to
generate a series of simplified meshes at different resolution levels,
which would be useful for progressive cloth simulation [Zhang et al.
2022]. Additionally, we also plan to explore the joint optimization of
the mesh and skinning weights in the future to enhance the quality
of the results.

ACKNOWLEDGMENTS
We would like to thank our colleagues from LightSpeed Studios,
Fengquan Wang and Dong Li, for their project support.

REFERENCES
MOSEK ApS. 2019. The MOSEK optimization toolbox for MATLAB manual. Version 9.0.

MOSEK.

Seungbae Bang and Sung-Hee Lee. 2018. Spline Interface for Intuitive Skinning Weight
Editing. ACM Trans. Graph. 37, 5, Article 174 (sep 2018), 14 pages.

David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). Association for Computing Machinery, New York, NY, USA, 43–54.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cláudio Silva, and Gabriel
Taubin. 1999. The ball-pivoting algorithm for surface reconstruction. IEEE transac-
tions on visualization and computer graphics 5, 4 (1999), 349–359.

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 33, 4, Article 154 (July 2014), 11 pages.

Stéphane Calderon and Tamy Boubekeur. 2017. Bounding Proxies for Shape Approxi-
mation. ACM Trans. Graph. 36, 4, Article 57 (jul 2017), 13 pages.

Weikai Chen, Cheng Lin, Weiyang Li, and Bo Yang. 2022a. 3PSDF: Three-Pole Signed
Distance Function for Learning Surfaces with Arbitrary Topologies. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Computer
Society, Los Alamitos, CA, USA, 18501–18510.

Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao. 2023. Robust
Low-Poly Meshing for General 3D Models. ACM Trans. Graph. 42, 4, Article 119 (jul
2023), 20 pages.

Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and Hao Zhang. 2022b. Neural
dual contouring. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1–13.

Zhiqin Chen and Hao Zhang. 2021. Neural marching cubes. ACM Transactions on
Graphics (TOG) 40, 6 (2021), 1–15.

Julian Chibane, Gerard Pons-Moll, et al. 2020. Neural unsigned distance fields for
implicit function learning. Advances in Neural Information Processing Systems 33
(2020), 21638–21652.

Jonathan Cohen, Marc Olano, and Dinesh Manocha. 1998. Appearance-Preserving
Simplification. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’98). Association for Computing Machinery,
New York, NY, USA, 115–122.

David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational Shape
Approximation. ACM Trans. Graph. 23, 3 (aug 2004), 905–914.

Olivier Dionne and Martin de Lasa. 2013. Geodesic Voxel Binding for Production Char-
acter Meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (Anaheim, California) (SCA ’13). Association for Computing
Machinery, New York, NY, USA, 173–180.

Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. 2008. Real-Time Data Driven Deforma-
tion Using Kernel Canonical Correlation Analysis. In ACM SIGGRAPH 2008 Papers
(Los Angeles, California) (SIGGRAPH ’08). Association for Computing Machinery,
New York, NY, USA, Article 91, 9 pages.

Wei-Wen Feng, Yizhou Yu, and Byung-Uck Kim. 2010. A Deformation Transformer
for Real-Time Cloth Animation. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10).
Association for Computing Machinery, New York, NY, USA, Article 108, 9 pages.

Marco Fratarcangeli, Valentina Tibaldo, and Fabio Pellacini. 2016. Vivace: A Practical
Gauss-Seidel Method for Stable Soft Body Dynamics. ACM Trans. Graph. 35, 6,
Article 214 (Nov. 2016), 9 pages.

Xifeng Gao, Kui Wu, and Zherong Pan. 2022. Low-Poly Mesh Generation for Building
Models. In ACM SIGGRAPH 2022 Conference Proceedings (Vancouver, BC, Canada)
(SIGGRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article
3, 9 pages.

Michael Garland and Paul S. Heckbert. 1997. Surface Simplification Using Quadric
Error Metrics. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing
Co., USA, 209–216.

Timothy D Gatzke and Cindy M Grimm. 2006. Estimating curvature on triangular
meshes. International journal of shape modeling 12, 01 (2006), 1–28.

Benoît Guillard, Federico Stella, and Pascal Fua. 2022. MeshUDF: Fast and Differentiable
Meshing of Unsigned Distance Field Networks. In Computer Vision – ECCV 2022,
Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal
Hassner (Eds.). Springer Nature Switzerland, Cham, 576–592.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1993. Mesh Optimization. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for
Computing Machinery, New York, NY, USA, 19–26.

Fei Hou, Xuhui Chen, Wencheng Wang, Hong Qin, and Ying He. 2023. Robust Zero
Level-Set Extraction from Unsigned Distance Fields Based on Double Covering.
ACM Transactions on Graphics (TOG) 42, 6 (2023), 1–15.

Alec Jacobson, Ilya Baran, Jovan Popović, and Olga Sorkine. 2011. Bounded Biharmonic
Weights for Real-Time Deformation. ACM Trans. Graph. 30, 4, Article 78 (jul 2011),
8 pages.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-Aligned Meshes. ACM Trans. Graph. 34, 6, Article 189 (nov 2015), 15 pages.

Doug L. James and Christopher D. Twigg. 2005. Skinning Mesh Animations. ACM
Trans. Graph. 24, 3 (jul 2005), 399–407.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

Proxy Asset Generation for Cloth Simulation in Games • 73:11

Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning with
Dual Quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics
and Games (Seattle, Washington) (I3D ’07). Association for Computing Machinery,
New York, NY, USA, 39–46.

Ladislav Kavan, Dan Gerszewski, AdamW. Bargteil, and Peter-Pike Sloan. 2011. Physics-
Inspired Upsampling for Cloth Simulation in Games. In ACM SIGGRAPH 2011 Papers
(Vancouver, British Columbia, Canada) (SIGGRAPH ’11). Association for Computing
Machinery, New York, NY, USA, Article 93, 10 pages.

Ladislav Kavan and Jiří Žára. 2005. Spherical Blend Skinning: A Real-Time Deforma-
tion of Articulated Models. In Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games (Washington, District of Columbia) (I3D ’05). Association for
Computing Machinery, New York, NY, USA, 9–16.

Dawar Khan, Alexander Plopski, Yuichiro Fujimoto, Masayuki Kanbara, Gul Jabeen,
Yongjie Jessica Zhang, Xiaopeng Zhang, and Hirokazu Kato. 2022. Surface Remesh-
ing: A Systematic Literature Review of Methods and Research Directions. IEEE
Transactions on Visualization and Computer Graphics 28, 3 (2022), 1680–1713.

Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook Kim,
Michael J. Black, and Sung-Hee Lee. 2017. Data-Driven Physics for Human Soft
Tissue Animation. ACM Trans. Graph. 36, 4, Article 54 (jul 2017), 12 pages.

Scott Kircher and Michael Garland. 2005. Progressive multiresolution meshes for
deforming surfaces. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation (Los Angeles, California) (SCA ’05). Association for
Computing Machinery, New York, NY, USA, 191–200.

Vladimir Kolmogorov and Ramin Zabin. 2004. What energy functions can be minimized
via graph cuts? IEEE transactions on pattern analysis and machine intelligence 26, 2
(2004), 147–159.

Nikos Komodakis and Georgios Tziritas. 2007. Approximate labeling via graph cuts
based on linear programming. IEEE transactions on pattern analysis and machine
intelligence 29, 8 (2007), 1436–1453.

Eric Landreneau and Scott Schaefer. 2009. Simplification of Articulated Meshes. Com-
puter Graphics Forum 28, 2 (2009), 347–353.

Binh Huy Le and Zhigang Deng. 2014. Robust and Accurate Skeletal Rigging from
Mesh Sequences. ACM Trans. Graph. 33, 4, Article 84 (jul 2014), 10 pages.

Minglei Li and Liangliang Nan. 2021. Feature-preserving 3D mesh simplification for
urban buildings. ISPRS Journal of Photogrammetry and Remote Sensing 173 (2021),
135–150.

Selena Zihan Ling, Nicholas Sharp, and Alec Jacobson. 2022. VectorAdam for Rotation
Equivariant Geometry Optimization. Advances in Neural Information Processing
Systems 35 (2022), 4111–4122.

Lijuan Liu, Youyi Zheng, Di Tang, Yi Yuan, Changjie Fan, and Kun Zhou. 2019. Neu-
roSkinning: Automatic Skin Binding for Production Characters with Deep Graph
Networks. ACM Trans. Graph. 38, 4, Article 114 (jul 2019), 12 pages.

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-Spring Systems. ACM Trans. Graph. 32, 6, Article 214 (Nov.
2013), 7 pages.

Yu-Tao Liu, Li Wang, Jie Yang, Weikai Chen, Xiaoxu Meng, Bo Yang, and Lin Gao.
2023. Neudf: Leaning neural unsigned distance fields with volume rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
IEEE Computer Society, Los Alamitos, CA, USA, 237–247.

Xiaoxiao Long, Cheng Lin, Lingjie Liu, Yuan Liu, Peng Wang, Christian Theobalt,
Taku Komura, and Wenping Wang. 2023. NeuralUDF: Learning Unsigned Distance
Fields for Multi-View Reconstruction of Surfaces with Arbitrary Topologies. In
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, Los Alamitos, CA, USA, 20834–20843.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J.
Black. 2015. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graph. 34, 6,
Article 248 (oct 2015), 16 pages.

William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. In Proceedings of the 14th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’87). Association for
Computing Machinery, New York, NY, USA, 163–169.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101 0, 0 (2017), 0.

Mickaël Ly, Jean Jouve, Laurence Boissieux, and Florence Bertails-Descoubes. 2020.
Projective Dynamics with Dry Frictional Contact. ACM Trans. Graph. 39, 4, Article
57 (July 2020), 8 pages.

Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-
Based Simulation of Compliant Constrained Dynamics. In Proceedings of the 9th
International Conference on Motion in Games (Burlingame, California) (MIG ’16).
Association for Computing Machinery, New York, NY, USA, 49–54.

Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer, Amy Gooch, and Niloy J.
Mitra. 2009. Abstraction of Man-Made Shapes. ACM Trans. Graph. 28, 5 (dec 2009),
1–10.

miHoYo. 2020. HoYoLAB. https://ys.biligame.com/gczj/.
Tomohiko Mukai and Shigeru Kuriyama. 2016. Efficient Dynamic Skinning with Low-

Rank Helper Bone Controllers. ACM Trans. Graph. 35, 4, Article 36 (jul 2016),

11 pages.
Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007a. Position

Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109–118.
Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007b. Position

Based Dynamics. J. Vis. Comun. Image Represent. 18, 2 (April 2007), 109–118.
NVIDIA. 2021. NVIDIA PhysX. https://developer.nvidia.com/physx-sdk. Version 4.1.
Siyu Ren, Junhui Hou, Xiaodong Chen, Ying He, and Wenping Wang. 2023. Geoudf:

Surface reconstruction from 3d point clouds via geometry-guided distance represen-
tation. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
IEEE Computer Society, Los Alamitos, CA, USA, 14214–14224.

William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. 1992. Decimation of
Triangle Meshes. SIGGRAPH Comput. Graph. 26, 2 (jul 1992), 65–70.

Jonathan Richard Shewchuk. 2002. What is a good linear element? interpolation,
conditioning, and quality measures.. In IMR. n/a, n/a, 115–126.

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2015. Realistic
Biomechanical Simulation and Control of Human Swimming. ACM Trans. Graph.
34, 1, Article 10 (dec 2015), 15 pages.

Olga Sorkine and Marc Alexa. 2007. As-Rigid-as-Possible Surface Modeling. In Proceed-
ings of the Fifth Eurographics Symposium on Geometry Processing (Barcelona, Spain)
(SGP ’07). Eurographics Association, Goslar, DEU, 109–116.

Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically De-
formable Models. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 205–214.

Jean-Marc Thiery and Elmar Eisemann. 2018. ARAPLBS: Robust and Efficient Elasticity-
Based Optimization of Weights and Skeleton Joints for Linear Blend Skinning with
Parametrized Bones. Computer Graphics Forum 37, 1 (2018), 32–44.

Sébastien Valette and Jean-Marc Chassery. 2004. Approximated Centroidal Voronoi
Diagrams for Uniform Polygonal Mesh Coarsening. Computer Graphics Forum 23, 3
(2004), 381–389.

Huamin Wang. 2015. A Chebyshev Semi-Iterative Approach for Accelerating Projective
and Position-Based Dynamics. ACM Trans. Graph. 34, 6, Article 246 (Oct. 2015),
9 pages.

Li Wang, Weikai Chen, Xiaoxu Meng, Bo Yang, Jintao Li, Lin Gao, et al. 2022. HSDF:
Hybrid Sign and Distance Field for Modeling Surfaces with Arbitrary Topologies.
Advances in Neural Information Processing Systems 35 (2022), 32172–32185.

Zhendong Wang, Longhua Wu, Marco Fratarcangeli, Min Tang, and Huamin Wang.
2018. Parallel Multigrid for Nonlinear Cloth Simulation. Computer Graphics Forum
37, 7 (2018), 131–141.

Kui Wu, Xu He, Zherong Pan, and Xifeng Gao. 2022. Occluder Generation for Buildings
in Digital Games. Computer Graphics Forum 41, 7 (2022), 205–214.

Zangyueyang Xian, Xin Tong, and Tiantian Liu. 2019. A Scalable Galerkin Multigrid
Method for Real-Time Simulation of Deformable Objects. ACM Trans. Graph. 38, 6,
Article 162 (Nov. 2019), 13 pages.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020.
RigNet: Neural Rigging for Articulated Characters. ACM Trans. Graph. 39, 4, Article
58 (aug 2020), 14 pages.

Eugene Zhang and Greg Turk. 2002. Visibility-Guided Simplification. In Proceedings of
the Conference on Visualization ’02 (Boston, Massachusetts) (VIS ’02). IEEE Computer
Society, USA, 267–274.

Jiayi Eris Zhang, Jérémie Dumas, Yun Fei, Alec Jacobson, Doug L James, and Danny M
Kaufman. 2022. Progressive simulation for cloth quasistatics. ACM Transactions on
Graphics (TOG) 41, 6 (2022), 1–16.

Zhongtian Zheng, Xifeng Gao, Zherong Pan, Wei Li, Peng-Shuai Wang, Guoping Wang,
and KuiWu. 2023. Visual-PreservingMesh Repair. IEEE Transactions on Visualization
and Computer Graphics 1, 1 (2023), 1–12.

Junsheng Zhou, Baorui Ma, Shujuan Li, Yu-Shen Liu, and Zhizhong Han. 2023. Learn-
ing a more continuous zero level set in unsigned distance fields through level set
projection. In Proceedings of the IEEE/CVF international conference on computer vision.
IEEE Computer Society, Los Alamitos, CA, USA, 3181–3192.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

https://ys.biligame.com/gczj/
https://developer.nvidia.com/physx-sdk

73:12 • Zheng, et al.

Input MeshUDF 323 LevelSetUDF 323 LevelSetUDF 2563 DCUDF 323 DCUDF 2563 Ours

Scarf (1,0.26,6.1e3) (22,0.42,1.5e4) (1,0.37,5.1e3) (1,0.60,5.4e3) (3,0.24,4.1e3) (1,0.24,4.1e3)

Collar (1,0.36,5.7e3) (20,0.94,2.4e4) (1,1.74,9.2e3) (1,0.91,7.0e3) (8,1.02,1.0e4) (1,0.24,3.7e3)

Tailcoat (4,0.30,5.5e3) (22,0.51,2.1e4) (2,0.90,9.5e3) (1,0.39,6.8e3) (6,0.54,7.1e3) (1,0.31,6.5e3)

Belt (1,0.20,5.3e3) (17,0.77,1.0e4) (3,0.37,7.8e3) (NA,NA,NA) (1,0.34,6.8e3) (1,0.10,5.2e3)

Dress (1,0.12,3.3e3) (10,1.10,3.6e4) (1,1.01,7.3e3) (NA,NA,NA) (3,0.41,2.8e3) (1,0.11,2.8e3)

Bag (1,0.20,2.7e3) (25,0.57,2.6e4) (1,1.07,1.6e4) (2,0.36,5.4e3) (1,0.21,3.1e3) (1,0.19,2.3e3)

Cape (1,0.31,4.4e3) (13,0.26,8.1e3) (2,0.94,8.3e3) (1,0.48,6.0e3) (NA,NA,NA) (1,0.15,2.8e3)

Tassel (3,0.38,9.4e3) (2,1.67,1.3e4) (3,1.67,1.2e4) (1,0.27,7.9e3) (6,1.67,3.2e4) (1,0.26,7.7e3)

Fig. 17. Eight randomly selected garment examples:We choose eight examples, “Scarf”, “Collar”, “Tailcoat”, “Belt”, “Dress”, “Bag”, “Cape”, and
“Tassel”, to the issues of existing methods and our superiority over them. (•, •, •) indicates boundary loops number, Hausdorff distance, and LFD.

ACM Trans. Graph., Vol. 43, No. 4, Article 73. Publication date: July 2024.

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Proxy Mesh Generation
	3.1 Isosurface Extraction
	3.2 Mesh Projection
	3.3 Single Layer Extraction
	3.4 Simplification

	4 Skinning Weight Optimization
	5 Results
	5.1 Proxy Mesh Evaluation
	5.2 Skinning Weights Evaluation

	6 Conclusion
	Acknowledgments
	References

