
i
i

i
i

i
i

i
i

Animating Water Using
Profile Buffer

Haozhe Su, Wei Li, Zherong Pan,
Xifeng Gao, Zhenyu Mao, and Kui Wu

21.1 Introduction

Water plays a crucial role in video games, contributing to both the vi-
sual and interactive aspects of the gaming experience. One technique to
create a realistic water surface animation is via a flowmap, a 2D veloc-
ity field texture, to advect the water displacement and normal textures
at runtime. More details about flowmaps can be found in [Vlachos 10].
While the flowmap technique stands out for its computational efficiency in
animating water within video games, it is not without limitations. One no-
table drawback is the potential for large distortion and stretching artifacts,
particularly in regions where the velocity magnitude is substantial. This
article introduces a novel approach to real-time water animation, leverag-
ing a wavelet-based methodology enhanced by a precomputed profile buffer
technique for optimal performance. The proposed technique aims to create
water waves dynamically based on factors such as world position, time, and
velocity present in the flowmap.

21.2 Background

In this section, we delve into the nuances of spectrum-based methods for
simulating water waves, initially introduced in [Jeschke et al. 18]. Un-
like partial differential equation (PDE)–based methods that rely on precise
spatial discretization, linear wave theory [Johnson 97] describes the wave
height dynamics η(x, t) at the position x in the 2D simulation domain with
time t that can be articulated in terms of frequencies as

η(x, t) =

∫
R2

A(x,k, t) cos (k · x− ω(k)t)dk, (21.1)

where A is the amplitude function that depends on k, x, and t and the
term cos (k · x− ω(k)t) represents a traveling wave. The wave vector k is

129

i
i

i
i

i
i

i
i

130 21. Animating Water Using Profile Buffer

a two-dimensional frequency function such that k = |k| is the wave number

and k̂ = k/k is the wave direction. The angular frequency ω(k) =
√
gk

represents the dispersion relation for deep water waves by encoding the
speed of each wave based on its wave number k and gravity g. To further
elaborate on the formula by employing the polar representation of the wave
vector k, we have

η(x, t) =

∫ 2π

0

∫ ∞

0

A(x,k, t) cos (k · x− ω(k)t)kdkdθ. (21.2)

For more information, please refer to [Jeschke et al. 18].

21.3 Our Method

In this section, we first introduce our decomposition of the amplitude field
A and then describe the discretization of each decomposed component.

21.3.1 Amplitude Field Decomposition

Unlike the previous work [Jeschke et al. 18] that evolves the amplitude
field A(x,k, t) in each time step to accurately depict wave movements, our
input water flow remains static and is specified by a precomputed flowmap,
such that the amplitude field A is only affected by the position and wave
vector. Furthermore, we introduce the following novel decomposition of
the amplitude field:

A(x,k) = A W (x, θ) ψ(k), (21.3)

where A serves as a constant factor for adjusting the wave strength,W (x, θ)
represents the weight associated with the wave direction θ at spatial posi-
tion x, and ψ(k) denotes the basis function of the wave. In the remainder
of this section, we aim to provide insight into this simplified wave model
by offering detailed explanations of each component.

Direction WeightW (x, θ) We denote the time-independent direction at the
location x from the flowmap as the primary wave direction θp:

θp(x) = arctan

(
vx
vz

)
, (21.4)

where vx and vz are the velocity components along the x- and z-axis, respec-
tively. By assuming that the wave direction is in the vicinity of the primary

i
i

i
i

i
i

i
i

21.3. Our Method 131

Figure 21.1. Top: Uniform water flow from left to right with consistent strength.
Bottom: Circular water flow. For both scenarios, the left result uses a small
relative angle range [−π

8
, π
8
], whereas the right uses a large relative angle range

[−π
2
, π
2
].

wave direction, the corresponding weight W (x, θ) can be computed as

W (x, θ) =

{
1− |θ−θp(x)|

C , if |θ − θp(x)| ≤ C;

0, otherwise;
(21.5)

where C is the half-width of the angle range with nonzero weight, which
will be addressed in Section 21.4.3. The farther the angle deviates from
the primary angle, the smaller the weight becomes. Figure 21.1 illustrates
comparisons between utilizing smaller and larger angle ranges with nonzero
weights.

Wave Basis ψ(k) In the frequency space, ψ(k) symbolizes the wave shape
with a representative wave number k. Although any wave spectrum can
be used as the wave basis, we choose to adopt the Phillips spectrum (List-
ing 21.1) as the basis for our waves.

Substituting Equation (21.3) into Equation (21.2) yields

η(x, t) =

∫ 2π

0

∫ ∞

0

AW (x, θ)ψ(k) cos (k · x− ω(k)t)kdkdθ

=

∫ 2π

0

AW (x, θ)

(∫ ∞

0

ψ(k) cos (k · x− ω(k)t)kdk

)
dθ.

(21.6)

i
i

i
i

i
i

i
i

132 21. Animating Water Using Profile Buffer

// Wave basis

float phillips spectrum(float waveNumber)

{
float windSpeed = 10.f;

float A = 2.f ∗ PI / waveNumber;
float B = expf(−1.8038f ∗ A ∗ A / powf(windSpeed , 4));
return 0.1391f ∗ sqrtf(A ∗ B);

}

Listing 21.1. The Phillips spectrum.

Profile Buffer Ψ̄(p, t) Performing a double integral to calculate η(x, t) via
Equation (21.6) for each pixel in the domain can be time-consuming, espe-
cially for high-resolution animations. Following the idea proposed by [Jeschke
et al. 18], we define the profile buffer Ψ̄(p, t):

Ψ̄(p, t) =

∫ ∞

0

ψ(k) cos (kp− ω(k)t)kdk, (21.7)

where p = k̂ · x is the projected position. By precomputing the integral
of Ψ̄(p, t), the original double integral in Equation (21.6) can be converted
into a single integral:

η(x, t) =

∫ 2π

0

AW (x, θ)Ψ̄(p, t)dθ. (21.8)

It is important to note that the profile buffer Ψ̄(p, t) is a function of both
p and t, requiring updates in every time step.

21.3.2 Discretization

Discretization of Ψ̄(p, t) In theory, the integral of the profile buffer involves
an infinite number of calculations when converted to the summation form.
In practice, we approximate Equation (21.8) with a finite number of sum-
mations as

Ψ̄(p, t) =

Nk−1∑
i=0

ψ(ki) cos (kip− ω(ki)t)ki∆k, (21.9)

whereNk represents the total number of sampled wave number values taken
into account.

The profile buffer is designed to be periodic, ensuring seamless tiling
across all of space. We introduce a spatial periodicity parameter L and
define the normalized projected position p̄ ∈ [0, 1) as

p̄ =
p− ⌊p/L⌋L

L
. (21.10)

i
i

i
i

i
i

i
i

21.4. Implementation Details 133

With this normalization, we can express the profile buffer in a reformulated
manner:

Ψ̄(p, t) = Ψ̄(p̄, t) =

Nk−1∑
i=0

ψ(ki) cos (kiLp̄− ω(ki)t)ki∆k. (21.11)

We can store the profile buffer result in this 1D array by uniformly sampling
Nk points in the interval [0, 1] as p̄i. The computation of the jth entry can
be achieved via

Ψ̄(p̄j , t) =

Nk−1∑
i=0

ψ(ki) cos (kiLp̄j − ω(ki)t)ki∆k, (21.12)

where p̄j = (j+0.5)/Nk and j = 0, 1, 2, . . . , Nk − 1. With lower and upper
limits of the wave number, kmin and kmax, we have ∆k = (kmax−kmin)/Nk

and ki = kmin + (i+ 0.5)∆k.

Discretization of η(x, t) Similarly, we discretize the wave direction θ into
Nθ samples and rewrite Equation (21.8) as

η(x, t) =
2πA

Nθ

Nθ−1∑
i=0

W (x, θi)Ψ̄(k̂i · x, t), (21.13)

where θi = 2πi/Nθ, x = (z, x), and k̂i = (cos θi, sin θi).

21.4 Implementation Details

In this section, we delineate the numerical algorithm for solving Equa-
tion (21.8), along with specific code implementations. At each time step,
two primary tasks must be executed: computing the profile buffer and
performing height integration. Refer to Listing 21.2 for an overview of
the algorithm pipeline. In our implementation, we use a CUDA kernel to
compute the profile buffer at the beginning of each frame and send it to
OpenGL as a 1D texture via CUDA OpenGL interop.

t← 0
Initialization // Section 21.4.1
while t < T
{

Precompute profile buffers // Section 21.4.2
Integrate water height in vertex shader // Section 21.4.3
Integrate water normal in fragment shader // Section 21.4.4
t← t+∆t

}

Listing 21.2. Pseudocode of our water wave animation.

i
i

i
i

i
i

i
i

134 21. Animating Water Using Profile Buffer

// Physical constants

#define PI 3.14159265359f

#define TAU 6.28318530718f

#define GRAVITY 9.81f

// Profile buffer constants

#define DIR NUM 32

#define SEG PER DIR 8

#define PB RESOLUTION 4096

#define WAVE DIM 4

#define FINE DIR NUM (DIR NUM ∗ SEG PER DIR)

Listing 21.3. Constants.

21.4.1 Initialization

We initialize the simulation through the following steps. Firstly, as both
the terrain and water are represented by height maps, we import these
height maps to construct the scene. Secondly, a flowmap, which records
the fluid velocity field at a stable state, is imported to indicate the wave
propagation direction and strength within the simulation domain. Lastly,
we define several macros to control the simulation details, as depicted in
Listing 21.3.

21.4.2 Precomputing the Profile Buffer

Profile buffer computation stands as a crucial element in achieving real-
time wave animation. Rather than performing intensive summations at all
pixels/vertices in the domain at every time step, we calculate the profile
buffer at the onset of each time step. We use the Phillips spectrum as the
wave basis ψ(k) mentioned in Section 21.1.

A 1×4096 texture with four channels (WAVE DIM=4) is used as the profile
buffer, in which displacement and spatial derivatives along vertical and
horizontal directions are stored at four channels, respectively. Note that
the cosine term in Equation (21.9) indicates the vertical displacement of the
Gerstner wave, while displacement and spatial derivatives can be computed
as demonstrated in Listing 21.4.

void gerstner wave(float∗ gw, float phase, float k)
{
float s = sin(phase);

float c = cos(phase);

gw[0] = −s; // Horizontal displacement

gw[1] = c; // Vertical displacement

gw[2] = −k ∗ c; // Derivative of gw[0]

gw[3] = −k ∗ s; // Derivative of gw[1]

i
i

i
i

i
i

i
i

21.4. Implementation Details 135

Figure 21.2. Left: Simplified wave without interpolation. Discontinuities arise
at the boundary between adjacent profile buffers. Right: Interpolated wave.

}

Listing 21.4. The Gerstner wave.

To simulate water waves across large open worlds, we construct the
profile buffers to be periodic for seamless extension in the world space.
This configuration could lead to potential discontinuities near the borders
of neighboring profile buffers, as illustrated in Figure 21.2. To resolve this,
we introduce cubic bumps:

cubic bump (x) =

{
x2(2|x| − 3) + 1, if |x| < 1;

0, otherwise;
(21.14)

with which we can interpolate the Gerstner wave without concern for dis-
continuity, as shown in Listing 21.5.

Equation (21.9) can now be computed straightforwardly, as shown in
Listing 21.6.

Fast/Slow Profile Tuning To gain finer control over wave behavior, we intro-
duce the profile scale s to adjust the wave propagation speed. The modified
dispersion relation ω(k) can then be expressed as

ω(k) = s
√
gk. (21.15)

A larger ω(k) corresponds to faster wave propagation. In practice, we
utilize two distinct values, s fast and s slow, to represent fast and slow
wave propagation, respectively. The profile buffers are then stored in two
separate textures: d PBf field and d PBs field .

i
i

i
i

i
i

i
i

136 21. Animating Water Using Profile Buffer

void interpolate gerstner wave(

real∗ gw, real k, real p, real L, real scale, real t)
{

real phase1 = k ∗ p − disper relation(k, scale) ∗ t;
real phase2 = k ∗ (p − L) − disper relation(k, scale) ∗ t;

real gw1[WAVE DIM];

real gw2[WAVE DIM];

gerstner wave(gw1, phase1, k);

gerstner wave(gw2, phase2, k);

real weight1 = p / L;

real weight2 = 1 − weight1;

real cb1 = cubic bump(weight1);

real cb2 = cubic bump(weight2);

for (int i = 0; i < WAVE DIM; ++i)

{
gw[i] = cb1 ∗ gw1[i] + cb2 ∗ gw2[i];

}
}

Listing 21.5. Gerstner wave interpolation.

void compute profile buffer(

real∗ result, real k, real p, real L, real scale, real t)
{

real waveLength = TAU / k;

real gw[WAVE DIM];

interpolate gerstner wave(gw, k, p, L, scale, t);

real ps = phillips spectrum(k);

for (int i = 0; i < WAVE DIM; ++i)

{
result[i] += waveLength ∗ ps ∗ gw[i];

}
}

Listing 21.6. Profile buffer computation.

21.4.3 Height Integration

Given the computed profile buffer, we integrate the displacement of the
water surface vertex via Gaussian quadrature on the fly in the vertex
shader. In particular, given a vertex position inPosition at its rest state,
we integrate its world position based on the precomputed profile buffers

i
i

i
i

i
i

i
i

21.4. Implementation Details 137

pbOFieldTex and flowmap layerDataTex.

Integration with Gaussian Quadrature Equation (21.13) represents the clas-
sical Riemann sum method designed for numerical integration. However,
it necessitates a greater number of summations to attain high precision.

We introduce Gaussian quadrature to provide an exact result for poly-
nomials of degree 2Nint−1 or lower through a suitable selection of nodes Pi

and weights αi for i = 0, . . . , Nint−1. It’s important to note that Gaussian
quadrature can be applied without modification when the original limits of
integration are [−1, 1]. In this scenario, the positions of integration points
P0, P1, . . . , PNint−1 as well as their associated weights α0, α1, . . . , αNint−1

can be precomputed, without requiring knowledge of the specific expres-
sion of the integrand. With this, we can transform the original Riemann
sum into a new form:

η(x, t) = sGA

Nint−1∑
i=0

αiW (x, θi)Ψ̄(z cos θi + x sin θi, t), (21.16)

where θi = πPi + π and sG = 2π
2 = π is a scaling factor. When the limits

of integration change to a custom range, the integration requires scaling,
and the scaling factor is simply the ratio of the actual limit length to the
original limit length, which is 2 for the range [−1, 1]. In the experiment,
we utilize 32 points of integration. The precomputed Gaussian quadrature
point positions and their associated weights are provided in Listing 21.7.

int nnodes = 32;

float nodes[32] = {
−0.9972638618494816f, −0.9856115115452684f,
−0.9647622555875064f, −0.9349060759377397f,
−0.8963211557660522f, −0.84936761373257f,
−0.7944837959679424f, −0.7321821187402897f,
−0.6630442669302152f, −0.5877157572407623f,
−0.5068999089322294f, −0.42135127613063533f,
−0.33186860228212767f, −0.23928736225213706f,
−0.1444719615827965f, −0.04830766568773831f,
0.04830766568773831f, 0.1444719615827965f,

0.23928736225213706f, 0.33186860228212767f,

0.42135127613063533f, 0.5068999089322294f,

0.5877157572407623f, 0.6630442669302152f,

0.7321821187402897f, 0.7944837959679424f,

0.84936761373257f, 0.8963211557660522f,

0.9349060759377397f, 0.9647622555875064f,

0.9856115115452684f, 0.9972638618494816f};
float weights[32] = {

0.007018610009469298f, 0.016274394730905965f,

0.025392065309262427f, 0.034273862913021626f,

0.042835898022226426f, 0.050998059262376244f,

0.058684093478535704f, 0.06582222277636175f,

0.07234579410884845f, 0.07819389578707031f,

0.08331192422694685f, 0.08765209300440391f,

i
i

i
i

i
i

i
i

138 21. Animating Water Using Profile Buffer

0.09117387869576386f, 0.09384439908080457f,

0.09563872007927483f, 0.09654008851472781f,

0.09654008851472781f, 0.09563872007927483f,

0.09384439908080457f, 0.09117387869576386f,

0.08765209300440391f, 0.08331192422694685f,

0.07819389578707031f, 0.07234579410884845f,

0.06582222277636175f, 0.058684093478535704f,

0.050998059262376244f, 0.042835898022226426f,

0.034273862913021626f, 0.025392065309262427f,

0.016274394730905965f, 0.007018610009469298f};

Listing 21.7. Gaussian quadrature points and weights.

Next, we provide a detailed implementation for computing each entry
in the summation in Equation (21.16) at the vertex position inPosition.
Assuming we have computed the primary angle θp = arctan(vx/vz), we can
calculate the weight W (x, θi) as follows:

float W = 1 − min(C, min(diffa, TAU−diffa))/C;

In our experiments, blending two profiles enhances the portrayal of
wave propagation details. Depending on the strength of velocity, we define
a weight function w = min(1, |v|), ensuring that the fast profile buffer occu-
pies a larger proportion as the magnitude of the current velocity increases.
Readers may have observed that the retrieved profile buffer comprises four
components, which are arranged in their original order as the horizontal
and vertical displacements of both the slow and fast profile buffers. The
blended profile buffer can be represented as:

vec2 pbb = (1.f − scale) ∗ pb.xy + scale ∗ pb.wz;

Here, pb.xy and pb.wz represent the displacement parts of the slow and fast
profile buffer, respectively.

Adaptive Limits of Integration We assume that the wave only propagates
within a range near the primary angle, as defined in Equation (21.4). Ex-
panding this range results in more waves in different directions blending
together, whereas narrowing it makes the wave appear to move predom-
inantly in one direction. We have demonstrated in Figure 21.1 that a
narrow range can lead to artificial constructive patterns. Conversely, an
excessively wide range can obscure the recognition of wave direction, result-
ing in smoothed-out wave propagation. To dynamically adjust the angle
range of wave propagation, we calculate the maximum difference in velocity
direction at each cell center with its neighboring cells, which serves as an
indicator of local velocity variation.

for each cell i in simulation domain
{

Mi ← Neighboring cells of cell i

i
i

i
i

i
i

i
i

21.4. Implementation Details 139

Figure 21.3. Adaptive limits of integration: a flowmap characterized by
uniform strength and a radial outward direction from a central point is evalu-
ated. From left to right, we employ a fixed small integration range, an adaptive
integration range, and a fixed large integration range, respectively. Prominent
artificial patterns are discernible on the left, while the wave propagation appears
excessively smooth, hindering clear recognition on the right. Our model depicted
in the middle exemplifies the outward movement of waves with realistic turbu-
lence.

θi ← arctan(vi/ui)
∆θmax ← 0
for each cell j ∈Mi

{
θj ← arctan(

vj
uj

)

∆θ ← ∥θj − θi∥
∆θ ← min(∆θ, 2π −∆θ)
if ∆θ > ∆θmax
{

∆θmax ← ∆θ
}

}
}

Listing 21.8. Pseudocode for local velocity variation computation.

With primary angles calculated and the maximum difference in veloc-
ity direction precomputed, the subsequent step involves determining the
limits of integration associated with nonzero weights. We operate under
the assumption that within a given area, if the local velocity variation is
significant, we require a larger range of integration angles to accurately
represent the varying wave propagation directions. As previously men-
tioned, we partition all possible propagation directions within the range
[0, 2π] into DIR NUM segments. Each segment is further subdivided into SEG

PER DIR pieces, resulting in a total of DIR NUM * SEG PER DIR subdivisions
across the full 2π range. Subsequently, we determine which subdivisions
correspond to nonzero weights. We calculate the half-width of the nonzero
weight area, denoted as C:

int INT NUM = min(16,4+int(500∗delta mag/TAU));
int SEG HW = SEG PER DIR∗INT NUM;
float C = float(SEG HW)/float(FINE DIR NUM)∗TAU;

i
i

i
i

i
i

i
i

140 21. Animating Water Using Profile Buffer

Listing 21.9. Compute adaptive limits of integration.

21.4.4 Normal Integration

Surface normal calculation is indispensable for visually representing the
surface shape of waves in rendering. Theoretically, the surface normal of
a height map can be computed via n = Tz×Tx

∥Tz×Tx∥ , where Tz and Tx are

the gradient vectors in the z/x-direction (in other words, the horizontal
directions in OpenGL), respectively. Given the integration process for wave
height from Equation (21.8), we can calculate the gradient of the height
map concerning the horizontal position:

∇xη(x, t) = ∇x

∫ 2π

0
AW (x, θ)Ψ̄(p, t)dθ, (21.17)

=

∫ 2π

0
∇x (AW (x, θ)) Ψ̄(p, t)dθ +

∫ 2π

0
AW (x, θ)∇x

(
Ψ̄(p, t)

)
dθ, (21.18)

We adopt the approach suggested in [Jeschke et al. 18], wherein we omit the
first term. This decision is supported by the observation that the flowmap
maintains continuity in space, indicating that the derivative ∇x (Aω(x, θ))
tends to be close to 0. We can now finalize the formula for calculating
height gradients as follows:

∇xη(x, t) =

∫ 2π

0

AW (x, θ)∇xΨ̄(p, t)dθ. (21.19)

The calculation of the gradient vectors Tz and Tx can be executed as:

Tz = (1, 0,∇xηz) ⇒ Tz = Tz/||Tz||, (21.20)

Tx = (0, 1,∇xηx) ⇒ Tx = Tx/||Tx||. (21.21)

Note that we have not taken into account the horizontal displacement,
but only the vertical displacement. Normal integration procedure is exe-
cuted within the fragment shader, and the pipeline closely resembles that
of height integration, albeit with the additional step of integrating Tz and
Tx and subsequently employing the cross-product operation to derive the
normal vector.

... // Initial setup

vec3 tz = vec3(0.f, 0.f, 1.f);

vec3 tx = vec3(1.f, 0.f, 0.f);

for(int sid = 0; sid < nnodes; ++sid)

{
... // Normal integration

}

i
i

i
i

i
i

i
i

21.5. Results 141

vec3 newNormal = cross(tz, tx);

newNormal = normalize(newNormal);

Listing 21.10. Normal integration.

21.5 Results

In this section, we demonstrate the effectiveness of our method. In particu-
lar, we showcase how the profiling time is significantly reduced through the
implementation of Gaussian quadrature. Additionally, we elucidate how
adaptive limits of integration contribute to overall quality improvement
and highlight how blending two profile buffers enhances the depiction of
wave movements. We utilize a custom-designed map featuring a river scene
for all demonstrations and comparisons, as shown in Figure 21.4. All tests
have been conducted using a 4.0 GHz AMD Ryzen Threadripper PRO
5955WX 16-Cores processor paired with an NVIDIA GeForce RTX 4080
GPU with 16 GB of memory.

Figure 21.4. Left: terrain height map. The whiter areas indicate higher
elevations. Middle: flowmap. The dark purple shades represent lower velocity
magnitudes, while the bright yellow shades represent higher velocity magnitudes.
Right: top view of the rendered scene.

21.5.1 Riemann Sum vs. Gaussian Quadrature

We observe that Gaussian quadrature with 32 integration points achieves
visual results comparable to those of Riemann sum with 192 integration
points. Notably, this achievement is accompanied by a significant reduction
in profiling time by 63%, highlighting the efficiency of our proposed method.
Moreover, to achieve a similar profiling time, Riemann sum is constrained
to using only 32 points, resulting in a compromised visual appearance. This
trade-off underscores the superiority of Gaussian quadrature in balancing

i
i

i
i

i
i

i
i

142 21. Animating Water Using Profile Buffer

RS w. 32 points RS w. 64 points

RS w. 96 points RS w. 144 points

RS w. 192 points GQ w. 32 points

Figure 21.5. Comparison between Riemann sum (RS) with different numbers
of integration points (32, 64, 96, 144, 192) and Gaussian quadrature (GQ). The
Riemann sum exhibits noticeable unnatural patterns with an insufficient num-
ber of integration points (32). Furthermore, the Riemann sum method requires
approximately six times the number of integration points to attain comparable
results in visual fidelity and detail.

Integration Method # integration points Runtime (ms)

Riemann sum

32 3.01
64 4.65
96 4.91
144 6.46
192 8.26

Gaussian quadrature 32 3.03

Table 21.1. Performance comparison between the Riemann sum with different
numbers of integration points and the Gaussian quadrature.

computational efficiency with visual quality. Please refer to the results
depicted in Figure 21.5.

21.5.2 Adaptive Limits of Integration

Next, we delve into the adaptive limits of integration, showcasing its impact
on visual appearance. During per-pixel normal integration and per-vertex
height integration, the flowmap indicates the local flow orientation, and we
set the maximum amplitude strength to appear along this direction. The

i
i

i
i

i
i

i
i

21.6. Conclusion 143

Fixed rel. limits [−π
8
, π
8
] Back view

Fixed rel. limits [−π
2
, π
2
] Back view

Fixed rel. limits [−π, π] Back view

Adaptive rel. limits Back view

Figure 21.6. Adaptive integration limits are examined in comparison to fixed
limits of integration (relative ranges include [−π

8
, π
8
], [−π

2
, π
2
], [−π, π]). With a

small integration range, anomalous constructive patterns emerge, while a large
range results in overly smoothed wave movement and vague wave propagation
direction. Adaptive integration limits effectively mitigate observable constructive
structures and enhance the clarity of wave propagation direction.

amplitude strength linearly diminishes as the direction deviates further
from the central orientation. The proposed adaptive strategy decides the
maximum nonzero amplitude range, based on variation in local flowmap.
Please refer to the results illustrated in Figure 21.6.

21.5.3 Fast/Slow Wave Propagation Blending

Next, we compare wave behaviors characterized by fast propagation speed,
slow propagation speed, and the blending of the two, illustrated in Fig-
ure 21.7.

21.6 Conclusion

We have introduced a real-time framework for simulating waves in open-
world scenarios. Central to our approach is the profile buffer, which effi-

i
i

i
i

i
i

i
i

144 21. Animating Water Using Profile Buffer

Slow profile buffer At a later time

Slow/Fast blending At a later time

Fast profile buffer At a later time

Figure 21.7. We compare the visual appearance of using (Top) slow profile
buffer, (Bottom) fast profile buffer as well as (Middle) blending of slow/fast
profile buffers.

ciently transforms computationally-intensive integration tasks into reusable
texture fetching operations. By incorporating Gaussian quadrature, we
achieve significant speed improvements while maintaining visual quality.
Furthermore, the adaptive limits of integration enable us to achieve diverse
visual effects, while the blending of profile buffers enriches wave propaga-
tion details.

21.7 Acknowledgement

The authors would like to specially thank Stefan Jeschke and Chris Wojtan
for their support and guidance.

Bibliography

[Jeschke et al. 18] Stefan Jeschke, Tomáš Skřivan, Matthias Müller-
Fischer, Nuttapong Chentanez, Miles Macklin, and Chris Wojtan.
“Water surface wavelets.” ACM Trans. Graph. 37:4.

[Johnson 97] R. S. Johnson. A Modern Introduction to the Mathematical
Theory of Water Waves. Cambridge Texts in Applied Mathematics,
Cambridge University Press, 1997.

i
i

i
i

i
i

i
i

Bibliography 145

[Vlachos 10] Alex Vlachos. “Water Flow in Portal 2.”, 2010. Advances in
Real-Time Rendering in 3D Graphics and Games in Siggraph.

	Dedication
	Preface
	15ptIGPU-Driven Rendering
	GPU-Driven Rendering in Assassin's Creed Mirage
	GPU-Driven Curve Generation from Mesh Contour
	GPU Readback Texture Streaming in Skull and Bones
	Triangle Visibility Buffer 2.0
	Resource Management with Frame Graph in Messiah
	Multi-mega Particle System

	15ptIIRendering and Simulation
	The Evolution of the Real-Time Lighting Pipeline in Cyberpunk 2077
	Real-Time Ray Tracing of Large Voxel Scenes
	Optimizing FSR 2 for Adreno
	IBL-BRDF Multiple Importance Sampling for Stochastic Screen-Space Indirect Specular
	Practical Clustered Forward Decals
	Virtual Shadow Maps
	Real-Time Simulation of Massive Crowds
	Diffuse Global Illumination

	15ptIIIGame Engine Design
	GPU Capability Tracking and Configuration System
	Forge Shader Language
	Simple Automatic Resource Synchronization Method for Vulkan Applications

	15ptIVTools of the Trade
	Differentiable Graphics with Slang.D for Appearance-Based Optimization
	Introduction
	What Is Differentiable Programming?
	Differentiable Shader Programming with Slang
	Applications
	Conclusion
	Bibliography

	DRToolkit: Boosting Rendering Performance Using Differentiable Rendering
	Introduction
	Overview of Differentiable Rendering
	System Overview
	Renderer Implementation
	Handling Materials
	Processing of Meshes
	Processing of Global Parameters
	Workflow Integration
	Conclusion and Future Work
	Bibliography

	Flowmap Baking with LBM-SWE
	Introduction
	Related Work
	Background
	Our Method
	Results
	Conclusion
	Bibliography

	Animating Water Using Profile Buffer
	Introduction
	Background
	Our Method
	Implementation Details
	Results
	Conclusion
	Acknowledgement
	Bibliography

	Advanced Techniques for Radix Sort
	Introduction
	Conventional Radix Sort
	Classic Radix Sort on the GPU
	Decoupled Look-Back and Onesweep
	Optimizations
	Performance
	Conclusion
	Acknowledgement
	Bibliography

	Two-Pass HZB Occlusion Culling
	Introduction
	Brief overview of HZB culling
	Problem
	Potential solutions
	Two pass solution
	Conclusion
	Bibliography

	Shader Server System
	Introduction
	Typical features of a shader compiler
	Designing a dynamic shader recompilation system
	Considerations when implementing ShaderServer
	Considerations for a production-ready implementation
	Conclusion
	Bibliography

	About the Editors
	About the Authors

