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Flowmap Baking
with LBM-SWE

Wei Li, Haozhe Su, Zherong Pan,
Xifeng Gao, Zhenyu Mao, and Kui Wu

20.1 Introduction

The real-time simulation of water dynamics holds paramount importance
across various industries, particularly in gaming and virtual reality appli-
cations. The integration of realistic water rendering significantly enhances
user experiences, fostering immersive and visually captivating virtual land-
scapes. The ability to achieve dynamic and responsive water surfaces en-
compassing oceans, rivers, and lakes contributes to the creation of a more
authentic and engaging virtual environment. While numerous research di-
rections, including position-based fluids (PBF) [Macklin and Müller 13],
smoothed particle hydrodynamics (SPH) [Koschier et al. 22], and shallow
water equations (SWE) [Su et al. 23, Chentanez and Müller 10], have ad-
vanced the field of real-time water simulation, these methods encounter
challenges when addressing large-scale simulation domains with the de-
mand for high-fidelity outcomes.

An alternative approach employed in the gaming industry involves pre-
computing a 2D velocity field texture, known as a flowmap. This flowmap
is utilized to animate water movement by displacing the water surface
texture in UV space. Further details on flowmaps can be found in [Vla-
chos 10]. Leveraging a flowmap enables game developers to achieve real-
istic and dynamic water movement while significantly reducing computa-
tional costs during gameplay. Unfortunately, the current flowmap creation
pipeline heavily relies on manual craftsmanship by artists, leading to time-
consuming processes. Although conventional 2D Navier—Stokes simulation
methods can generate flowmaps, these approaches typically neglect under-
water terrain considerations, thereby impacting the fidelity of simulation
results. The lattice Boltzmann model for shallow water equations (LBM-
SWE) [Zhou 02] presents an approach for simulating large bodies of water,
including oceans, seas, and large lakes, under the shallow water assump-
tion. This model has been employed [Grenier 18] to compute flowmaps,
benefiting from its high computational efficiency and effective handling of
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116 20. Flowmap Baking with LBM-SWE

underwater terrain. However, a significant drawback emerges in its sus-
ceptibility to instability issues when simulating turbulent cases. These
challenges frequently lead to failures in generating accurate flowmaps, par-
ticularly in complex scenarios.

In the following sections, we present an enhanced LBM-SWE formula-
tion incorporating a new force model to bolster stability and robustness in
turbulent flow, particularly at high Reynolds numbers. Our approach yields
an accurate and stable LBM solver capable of addressing both laminar and
turbulent flow problems. Experimental results demonstrate the efficacy of
our model, showcasing its ability to produce accurate simulations. Addi-
tionally, our model supports a wide range of Reynolds numbers in complex
geometries, further substantiating its versatility and applicability.

20.2 Related Work

The shallow water equations are employed to simulate the behavior of wa-
ter in environments where the water depth is significantly smaller than the
horizontal dimensions, particularly in large-scale scenarios, such as oceans,
seas, or large lakes. Derived from the full Navier–Stokes equations for
fluid dynamics, SWE makes specific assumptions that enable more com-
putationally efficient simulations. This approach has found widespread
use in diverse applications, including ocean engineering [Salmon 99], hy-
draulic engineering [Valiani et al. 02], and coastal engineering [Tubbs and
Tsai 19]. Traditional methods for solving SWE include the finite dif-
ference method [Su et al. 23, Chentanez and Müller 10], finite volume
method [Brodtkorb et al. 12], and finite element method [Ricchiuto and
Bollermann 09]. However, these conventional techniques introduce no-
table numerical dispersion, resulting in pronounced viscosity in the out-
put results. They often encounter difficulties in accurately simulating bed
slope and friction forces due to inherent numerical errors [Garćıa-Navarro
et al. 19]. Moreover, these methods face challenges in handling complex
geometries and are computationally expensive.

The lattice Boltzmann method (LBM) [Chen and Doolen 98] is a meso-
scopic method based on statistical theory and has gained prominence as an
effective alternative for simulating turbulent, incompressible flow, grounded
in the Boltzmann equation and kinetic theory. A key advantage of LBM
lies in its utilization of local streaming and collision operators, endowing
it with high parallelizability [Li et al. 20, Lyu et al. 21, Li et al. 21, Li
et al. 22, Li and Desbrun 23, Li et al. 23]. The Bhatnagar–Gross–Krook
lattice Boltzmann method (BGK-LBM) has been extensively applied to
solve shallow water equations with appropriate equilibrium distribution
functions [Zhou 02]. In the pursuit of enhanced accuracy and stability,
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multiple-relaxation time (MRT) collision models have been proposed in
various works [Garćıa-Navarro et al. 19]. Among these MRT methods,
the non-orthogonal central-moment (NO-CMR) based lattice Boltzmann
scheme has demonstrated superior performance [De Rosis 17].

The lattice Boltzmann model for shallow water equations, as intro-
duced in [Zhou 02], offers an effective approach for simulating large bodies
of water due to its computational efficiency, derived from the LBM scheme.
However, a limitation arises from its reliance on the BGK collision model,
which, due to its first-order nature, is constrained in handling low Reynolds
numbers. To address this limitation, the non-orthogonal central moment
(NO-CMR) was introduced into LBM-SWE [De Rosis 17]. This method
transforms the distribution function into a central-moment space, where
each component relaxes toward its equilibrium with an individual rate
before being converted back. Despite this improvement, the force term
in [De Rosis 17] still employs the low-order expression from [Zhou 02],
which may not be accurate enough for turbulent flows. In our new LBM-
SWE solver, we propose a high-order forcing model in moment space and
a second-order weighted estimation for force calculation to obtain accu-
rate force evaluation. To obtain stable boundary treatment in complex
geometries, we also propose a hybrid bounce-back method for turbulent
flowmaps.

20.3 Background

In this section, we first review the shallow water equations and then their
corresponding lattice Boltzmann model.

20.3.1 Shallow Water Equations

The 2D shallow water equations are derived according to the continuity
and momentum conservation, which can be written in a tensor form as

∂h

∂t
+
∂hu

∂x
= 0, (20.1)

∂hu

∂t
+∇ · (huu) = −g

2
∇2h+ ν∇ ·

(
h
(
∇u+ (∇u)T

))
+ F, (20.2)

where x is the the Cartesian coordinate, h is the water height, u is the
depth-averaged velocity component, g = 9.81 m/s2 is the gravitational
acceleration, ν is the kinematic viscosity, and F is the external force term.
In particular, the external force term is defined as the sum of the hydrostatic
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pressure and bed shear stress:

F = −gh∇z − τ b

ρ
, (20.3)

where z is terrain height and τ b is the bed shear stress.

20.3.2 BGK-LBM for Shallow Water Equations

With the BGK approximation, Zhou [Zhou 02] first formulated SWE into
the following lattice Boltzmann equation:

fi(x+∆tci, t+∆t)− fi(x, t) =
1

τ
[feq

i (x, t)− fi(x, t)] + ∆tFi(x, t), (20.4)

where Fi(x, t) is the force term, fi and f eqi are the current distribution
function and local equilibrium distribution function along ith direction on
the nine-speed square lattice, as shown in Figure 20.1. The lattice velocity
vector ci is defined as

ci =


[0, 0], i = 0;

[1, 0], [0, 1], [−1, 0], [0,−1], i = 1, 2, 3, 4;

[1, 1], [−1, 1], [−1,−1], [1,−1], i = 5, 6, 7, 8.

(20.5)

The relaxation factor τ is based on the fluid kinematic viscosity ν as τ =
3ν + 0.5, and the time step ∆t = 1 is the convention as LBM space is
dimensionless space.

Figure 20.1. Two-dimensional nine-speed (D2Q9) lattice structure.

Equation (20.4) can be solved using the splitting method with two steps:
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Step 1: Streaming First, note that

f∗i (x+∆tci, t+∆t) = fi(x, t). (20.6)

Then, the macroscopic variables h and u can be updated as

h =
8∑

i=0

fi, (20.7)

u∗ =
8∑

i=0

f∗i ci
h

. (20.8)

Step 2: Collision For the second step,

fi(x, t) = f∗i (x, t) +
1

τ
[feqi (x, t)− f∗i (x, t)] + ∆tFi(x, t), (20.9)

where the local equilibrium distribution function f eqi is defined as

f eqi =


h− 5gh2

6 − 2h
3 u · u, i = 0;

gh2

6 + h
3 ci · u+ h2

2 (ci · u)2 − h
6 ci · u, i = 1, 2, 3, 4;

gh2

24 + h
12ci · u+ h2

8 (ci · u)2 − h
24ci · u, i = 5, 6, 7, 8.

(20.10)

The force term Fi(x, t) can be computed by accounting for the external
force F = (Fx, Fy):

Fi(x, t) =
1

6
ci · F(x, t), (20.11)

where the external force F = [Fx, Fy] is defined in Equation (20.3).

20.4 Our Method

In this section, we first review the central-moment MRT model for LBM,
then introduce our high-order forcing formula, followed by our hybrid
bounce-back method for stable boundary treatment.

20.4.1 NO-CMR LBM-SWE

The central-moment MRT model was first introduced to significantly im-
prove LBM accuracy [De Rosis 17]. In 2D, this model uses non-orthogonal
central moments m derived from distribution functions f = [f0, ..., f8] via
a linear transform m = Mf , where M is a matrix known in closed form as
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a function of the macroscopic velocity u. In particular, M = [m0, ...,m8]
T

is a 9× 9 moment-space projection matrix in which each row is defined as

m0 = [1, 1, 1, 1, 1, 1, 1, 1, 1], (20.12)

m1 = [c̄0,x, ..., c̄8,x], (20.13)

m2 = [c̄0,y, ..., c̄8,y], (20.14)

m3 = [c̄20,x + c̄20,y, ..., c̄
2
8,x + c̄28,y], (20.15)

m4 = [c̄20,x − c̄20,y, ..., c̄
2
8,x − c̄28,y], (20.16)

m5 = [c̄0,xc̄0,y, ..., c̄8,xc̄8,y], (20.17)

m6 = [c̄20,xc̄0,y, ..., c̄
2
8,xc̄8,y], (20.18)

m7 = [c̄0,xc̄
2
0,y, ..., c̄8,xc̄

2
8,y], (20.19)

m8 = [c̄20,xc̄
2
0,y, ..., c̄

2
8,xc̄

2
8,y], (20.20)

where c̄i = [c̄i,x, c̄i,y] is the shifted lattice velocities by the local fluid ve-
locity u∗, with c̄i,x = ci,x −u∗

x and c̄i,y = ci,y −u∗
y. Row m0 is simply the

zeroth-order moment (equal to density), m1 and m2 are the components of
the vector representing the first-order moment, m3, . . . ,m5 are the compo-
nents of the symmetric second-order moment, and the others are high-order
moments.

Then, Equation (20.4) can be rewritten in the moment format as

f t+1 − f t = M−1
(
R(meq −m)−MF

)
, (20.21)

where R = diag{r0, ..., r1} is the diagonal matrix containing the relaxation
rates ri =

1
τ for i = 4, 5 and otherwise set to 1 [De Rosis 17].

20.4.2 High-Order Forcing for NO-CMR

We can divide the force terms into two parts according to the trapezoidal
rule or Crank–Nicolson discretization. First, add one-half force into macro
velocity after the streaming step:

hu∗ =
∑
i

f∗i ci +
F

2
= hut +

F

2
. (20.22)

Then, the NO-CMR collision model from Equation (20.21) becomes

f t+1 = f t −M−1
(
R(m−meq) + (I− 1

2R)K
)
, (20.23)

where K represents the force terms projected into central-moment space,

K =

[
0, Fx, Fy, 0, 0, 0,

1

3
Fy,

1

3
Fx, 0

]T
. (20.24)
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It is easy to verify the forcing model’s accuracy by taking the first-order
moment of Equation (20.23) as

ut+1 =

∑
i f

∗
i ci
h

+
F

2h
= u∗ +

F

2h
= ut +

F

h
. (20.25)

For R, we introduce the high-order relaxation times ν6 = ν7 = 0.1 and
ν8 = 0.1 for corresponding to relaxation rate ri = 1/(3 ∗ νi + 0.5) for a
lower dissipation error [Li et al. 20].

Instead of approximating the first term ∇z in Equation (20.3) by the
central difference method [Zhou 02], We use the second-order weighted
estimation used in [Li et al. 21]:

∇z(x) =
∑
i

wiciz(x+ ci). (20.26)

It is a rotationally symmetric gradient approximation, which is more accu-
rate and stable than the traditional central difference method.

20.4.3 Hybrid Bounce-Back

Zhou proposed the bounced-back method for the boundary treatment [Zhou 02],
as illustrated in Figure 20.2 (left), which can be written as

fi(x, t+ 1) = fi′(x, t). (20.27)

It means that the function fi′ at node x along the i′ direction that collides
with the solid boundary will bounce back to the ith direction to update

x

l

fi

fi′ x

fi

fi′

feqi′

Figure 20.2. Boundary treatment: bounce-back method used in [Zhou 02] (left),
and our hybrid bounce-back method (right).
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fi(x, t + 1). Unfortunately, it is too unstable to handle complex terrain
geometries as it brings high-frequency ghost modes into low-order velocity
moments, which ruins the simulation.

Motivated by the single-node boundary treatment [Filippova and Hänel 98,
Li et al. 22], we proposed the stable hybrid bounce-back method in the
LBM-SWE framework. In particular, the incoming distribution function
coming from the boundary toward a fluid node along a boundary-crossing
link l (dotted blue line in Figure 20.2, left) can be partially approximated
by the equilibrium distribution function of a point at the intersection of
the link and the boundary. In the context of shallow water fluid simulation
with static obstacles, we impose the zero-velocity boundary condition (see
Figure 20.2, right) on the obstacle to evaluate the local values of f eq(x)
and blend the bounce-back distribution fi′(x) and the equilibrium f eqi′ (x)
on the fluid node x near the solid:

fi(x, t+ 1) = (1− α)fi′(x, t) + αf eqi′ (x, t), (20.28)

where we set α = 0.1 in practice. By adding the equilibrium function,
we can filter out non-physical oscillations in the distribution function fi
after boundary treatment, which shows better stability in turbulent flow
simulations.

20.4.4 Inlet/Outlet Boundary Conditions

We use the Dirichlet boundary condition for macroscopic variables, the
water height h and the velocity u. Based on the assumption that the
distribution function f deviates only slightly from the equilibrium state
f eq, we use f eq to approximate f based on Equation (20.10).

20.4.5 Implementation Details

We implemented our approach in CUDA, using a structure-of-arrays (SOA)
data structure [Chen et al. 22], storing 24 variables per grid node, in which
nine variables store the distribution functions f , with two copies to facilitate
the time update, two variables for velocity, two variables for force terms, one
variable for z, and one variable for h. Listing 20.1 provides the pseudocode
of one iteration of our LBM-SWE update scheme. Please see the attached
example application for specific implementations.

20.5 Results

In this section, we test our LBM-SWE solver on one benchmark case for
verification and two examples with complex terrains to showcase the effec-
tiveness of our method.
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for each node at x
{

for each direction i
{

if (Node x− ci is not water or h(x− ci) < z(x− ci))
{

Hybrid bounce−back // Section 20.4.3
}
else

{
Streaming // Equation (20.6)

}
}
Evaluate h and u∗ // Equation (20.7)
Calculate force terms // Section 20.4.2
Update u // Equation (20.22)
Collision // Equation (20.23)
Boundary treatment // Section 20.4.4

}

Listing 20.1. Pseudocode of our LBM-SWE solver.

20.5.1 Circular Dam Break

We test our method in a circular dam break scene (proposed in [Peng
et al. 16]) with a square periodic domain with length L = 40 m. In the
center of this domain is a cylindrical water column with the following initial
settings:

u(x, 0) = 0; (20.29)

h(x, 0) =

{
2.5, (x− xc)

2 ≤ R2;

0.5, (x− xc)
2 > R2;

(20.30)

where xc = [L2 ,
L
2 ] and the radius R = 2.5 m.

We use 100× 100 grid nodes to discretize the domain with world-space
dt = 0.05 s for each time step. Figure 20.3 visualizes the height profile at
t = 3.5 s at the cross-section of x = xc, where circles indicate our result
and dots the reference data from [Peng et al. 16]. The graph shows that
our method demonstrates the same accuracy and robustness as the raw
moment-based collision model does, but our central-moment model also
has the ability to handle turbulent flow with complex terrain situations.

20.5.2 Flow through a Canyon

To highlight our handling of complex geometries, we run our LBM-SWE in
a canyon in which the terrain height h is normalized in a range of [0.02, 8].
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Figure 20.3. The height profile of a circular dam break generated by our solver
(circles) and reference data from [Peng et al. 16] (dots).

Figure 20.4. Given the height map of the terrain (left), the flowmaps are gen-
erated by our LBM-SWE with different Reynolds numbers: Re = 4000, Re =
80000, and Re = 800,000. The brighter the color, the larger the velocity magni-
tude.

The simulation resolution is 512×512. Figure 20.4 demonstrates the result
of the velocity magnitude with different Reynolds numbers settings: Re =
4000, Re = 80000, and Re = 800,000. With a lower Reynolds number, the
resulting flowmap demonstrates the smooth behavior of laminar flow with
high viscous forces. In contrast, with a high Reynolds number, we can get
a turbulent flow with eddies, vortices, and turbulent structures throughout
the flow field, which highlights the advantage of our method over previous
techniques.

We further evaluate the performance over three different resolutions,
2562, 5122, and 10242, on NVIDIA GeForce RTX 2070 Super (laptop GPU).
We only need one frame of the velocity field as the flowmap to drive the
water animation in real time. We run our LBM-SWE simulator for 18,000
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steps to get a relatively stable velocity, the total times of which are 9 s,
27 s, and 126 s, respectively.

20.5.3 Flow in a River

We further test our solver by simulating the flow through a river. The
simulation domain is discretized into a 502 × 502 grid, and the terrain
height z is normalized to the range of [0.01, 8]. In this case, we set an inlet
to the left of the river terrain and set a circle outlet at the end (Figure 20.5).
In practice, we add the force term after 4000 steps to dampen the pressure
wave from distribution functions in the initialization stage. Figure 20.6
demonstrates an example of foam and water displacement driven by the
flowmap generated by our LBM-SWE solver.

Figure 20.5. Given the height map (left), flowmaps are generated by our LBM-
SWE solver with a fixed inlet and a constant outlet boundary (the pale yellow
circle). With different Reynolds numbers (Re = 400, Re = 6000, and Re =
60,000), our LBM-SWE solver can capture different vortex details as shown in
flowmaps. The brighter the color, the larger the velocity magnitude.

20.6 Conclusion

In this article, we proposed a new LBM-SWE solver with high-order force
evaluation in moment space and symmetric gradient approximation for bed
gradient, based on the central-moment collision model [De Rosis 17]. A new
hybrid bounce-back was formulated to handle complex terrain for turbulent
flow.

Leveraging the highly parallel nature of our solver, we achieved the
efficient generation of all flowmaps, even at 2K × 2K resolution, within a
matter of minutes. This practical and efficient computational performance
renders our method well-suited for gaming applications.
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Figure 20.6. The foam and water displacement driven by the flowmap generated
by our LBM-SWE.
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