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Fig. 1. Our automatic pipeline can convert a wide variety of strand-based hairstyles with 40K strands into hair card models using a small number
of cards (bottom, depending on hairstyles) and 32 individual card textures, while preserving high visual fidelity. Here, we show the input strand
model, our generated cards only, and cards rendered with textures.
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Hair cards remain awidely used representation for hair modeling in real-time
applications, offering a practical trade-off between visual fidelity, memory
usage, and performance. However, generating high-quality hair card mod-
els remains a challenging and labor-intensive task. This work presents an
automated pipeline for converting strand-based hair models into hair card
models with a limited number of cards and textures while preserving the
hairstyle appearance. Our key idea is a novel differentiable representation
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where each strand is encoded as a projected 2D curve in the texture space,
which enables end-to-end optimization with differentiable rendering while
respecting the structures of the hair geometry. Based on this representation,
we develop a novel algorithm pipeline, where we first cluster hair strands
into initial hair cards and project the strands into the texture space. We
then conduct a two-stage optimization, where our first stage optimizes the
orientation of each hair card separately, and after strand projection, our
second stage conducts joint optimization over the entire hair card model
for fine-tuning. Our method is evaluated on a range of hairstyles, including
straight, wavy, curly, and coily hair. To capture the appearance of short or
coily hair, our method comes with support for hair caps and cross-card.

CCS Concepts: • Computing methodologies → Shape modeling.

Additional Key Words and Phrases: Hair; hair card; differentiable rendering

ACM Reference Format:
Zhongtian Zheng, Tao Huang, Haozhe Su, Xueqi Ma, Yuefan Shen, Tongtong
Wang, Yin Yang, Xifeng Gao, Zherong Pan, and KuiWu. 2025. Auto Hair Card
Extraction for SmoothHair withDifferentiable Rendering.ACMTrans. Graph.
44, 6, Article 237 (December 2025), 12 pages. https://doi.org/10.1145/3763295

1 INTRODUCTION
Hair plays a significant role in creating believable characters and
immersive environments in films, video games, and virtual reality.
However, the average human scalp has approximately 100,000 to
150,000 hair follicles. Although strand-based hair simulation and
rendering have become increasingly popular in recent production
pipelines due to their ability to realistically capture dynamic be-
havior and visual richness [Epic Games 2021; Hsu et al. 2023, 2024,
2025; Huang et al. 2023; Tafuri 2019], hair cards remain a widely
adopted technique in real-time applications [Jiang 2016]. Hair cards
are flat, textured quad strips that approximate the visual appearance
of hair clusters. As illustrated in Fig. 1, hair cards can effectively re-
produce the intricate structure of complex hair styles. Beyond their
role in representing high-fidelity hair with a large number of tex-
tured planes [Jiang 2016], hair card representations are also widely
used in level-of-detail (LoD), where strand-based models serve as
a high-resolution representation, while hair cards can be used as
a low-resolution approximation to significantly reduce rendering
costs when hair is viewed from a distance. Additionally, mobile
games and other low-performance platforms still rely heavily on
card-based representations due to strict hardware constraints. Even
on high-performance PC platforms, strand-based hair is typically re-
served for main characters, while NPCs and background characters
use hair cards to reduce runtime costs.
Unfortunately, the industry currently heavily relies on crafting

hairstyles manually using hair cards. In this workflow, artists first
create a set of hair card textures that contain varying numbers
of strands and degrees of curvature. They then manually extrude
each hair card from the scalp outward, following the hair flow
while varying its length, width, and orientation to achieve a realistic
appearance. Apparently, the fidelity quality of the hair card model
is primarily bound by the number of cards and textures allowed. As
a result, manually crafting a low-resolution hair card model, with a
limited number of quads and card textures while maintaining high
visual fidelity to the reference strand-based model, is a challenging
and labor-intensive task, typically requiring several days to weeks
of work from an experienced artist.

Most recent researchworks have focused on reconstructing strand-
based hair models from single-view images [Wu et al. 2022; Zhang
and Zheng 2019; Zheng et al. 2023; Zhou et al. 2018], multi-view
inputs [Kuang et al. 2022; Wu et al. 2024b; Zhou et al. 2024], and
CT scans [Shen et al. 2023]. However, there is a lack of work on
converting these reconstructed strands into hair card representa-
tions suitable for real-time applications. Extracting hair cards from
strand-based hair models presents several challenges. First, there is a
strict budget on both the number of hair cards and on the size of tex-
ture, imposed by memory and computational efficiency constraints.
Therefore, the extraction process must carefully balance visual fi-
delity with performance. Second, the hairstyle is highly irregular
and chaotic, exhibiting significant variation in strand length, shape,
and structure, making it challenging to generate a simplified repre-
sentation while preserving visual details. Recently, Unreal Engine
(UE) [Epic Games 2021] introduced an automatic hair card genera-
tion tool from strand-based models [Epic Games 2025]. However,
the quality of its generated results remains insufficient for produc-
tion use, often failing to preserve the appearance of the target hair
strand model when the given hair card target is limited.
This paper presents the first automated pipeline that converts

straight and wavy strand-based hair models into hair cards. The pro-
cess begins with hair strand clustering, where strands are grouped
based on a hair shape similarity metric. For each cluster, we opti-
mize the orientation of the card geometry to minimize the strand
projection error. To improve memory efficiency and runtime per-
formance, we perform second-stage clustering on the hair textures,
enabling texture sharing across multiple cards. Finally, we jointly
optimize the hair card positions, strand shapes, and hair widths to
minimize differences in tangent, depth, and coverage between our
output cards and the original strand-based model. To this end, con-
ventional RGB-image texture representations can lead to significant
aliasing artifacts. Instead, we propose an explicit hair card represen-
tation in which each strand is projected into texture space as a 2D
curve. These 2D curves serve as an intermediate representation that
enables high-quality rendering and supports differentiable optimiza-
tion. To enhance the visual fidelity for short and coily hairstyles,
which is challenging for original hair card representation, our frame-
work also supports baking a hair cap texture and generating a pair of
crossed cards per hair cluster, enriching the volumetric appearance
of the hair.

We evaluate our pipeline on a diverse range of hairstyles, includ-
ing straight, wavy, curly, and coily hair, with a limited number of
cards and textures. Experiments show that our automated pipeline
surpasses both UE automatic solution and manual-crafted cards.

2 RELATED WORK
This section briefly reviews work on hair representation, hair mod-
eling, and extracting planar representations from meshes.

Hair Representation. Both hair simulation and rendering are com-
putationally expensive due to the large number of individual strands
and their complex interactions. To reduce computational costs, re-
searchers have developed various reduced representations over the
years, including 2D strips (commonly referred to as hair cards) [Koh
and Huang 2001; Ward et al. 2003], cubic lattice structures[Volino
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and Magnenat-Thalmann 2006], short hair strips [Guang and Zhiy-
ong 2002], and volumetric representations [Lee et al. 2019; Wu and
Yuksel 2016]. During rendering, these reduced representations are
expanded into full hair using baked textures or procedural func-
tions. Hair cards remain widely used in the gaming industry due
to their simplicity and efficiency [Jiang 2016]. For a comprehensive
overview of hair rendering and simulation, we refer readers to the
course by Bertails et al. [2008]. However, creating hair cards for
multiple LoDs continues to be a labor-intensive process for artists,
representing a significant bottleneck in production pipelines. Re-
cently, Huang et al. [2025] presents a real-time framework to create
and render hair LoD dynamically based on pre-clustered hairs.

Hair Modeling. Traditionally, artists have used tools like Maya
XGen to create strand-based and card-based hair models. However,
manually crafting hair remains a labor-intensive process. To sim-
plify hair authoring, Yuksel et al. [2009] introduced hair mesh, a
volumetric representation that provides high-level editing tools
for artists. Sketch-based input methods [Fu et al. 2007; Shen et al.
2020] have also offered user-friendly interaction capability, allow-
ing artists to design hair directly on the screen. For automatic hair
modeling, researchers have explored extracting strand-based geome-
tries directly from images. Earlier methods relied on heuristic-based
approaches [Hu et al. 2017; Jakob et al. 2009; Kong and Nakajima
1998; Paris et al. 2008; Sun et al. 2021] or leveraged large 3D hair
databases [Chai et al. 2016; Hu et al. 2015; Liang et al. 2018] for
guidance. Recently, learning-based techniques have demonstrated
accuracy and robustness in reconstructing simple hairstyles from
single-view images [Wu et al. 2022; Zhang and Zheng 2019; Zheng
et al. 2023; Zhou et al. 2018] and multi-view inputs [Kuang et al.
2022; Rosu et al. 2022; Sklyarova et al. 2023; Takimoto et al. 2024; Wu
et al. 2024b; Zakharov et al. 2024; Zhou et al. 2024]. Wu et al. [2024a]
present a geometric method to generate highly coiled hair. Beyond
explicit modeling and reconstruction, hair synthesis methods enable
hairstyle transfer from one to another using feature maps [Wang
et al. 2009], further refined with learning-based features [Chen et al.
2024; He et al. 2025; Sklyarova et al. 2024; Zhou et al. 2023]. How-
ever, these techniques primarily aim to generate explicit strand
geometries, which are computationally intensive and unsuitable for
real-time applications. There are also learning-based methods using
neural representations [Luo et al. 2024; Wang et al. 2023; Zheng
et al. 2025]. While neural-based methods have shown significant
progress in reconstructing and representing complex hair geometry,
integrating these representations into industrial game engines in a
highly efficient manner remains a major challenge.

Billboard Extraction. In addition to hair, arbitrarily oriented bill-
boards (or impostors) with textures are widely used for rendering
trees and forests [Behrendt et al. 2005] and large-scale scenes [Hladky
et al. 2022; Lall et al. 2018]. To convert a 3D mesh to billboards, Dé-
coret et al. [2003] proposed a greedy optimization algorithm that
approximates the 3D model using a discretized plane parameteri-
zation in spherical coordinates. This method was later enhanced
by Andujar et al. [2004] to produce better-fitting billboards. Silven-
noinen et al. [2014] uses a similar concept to generate sets of planars
as occluders. However, as hair presents unique challenges due to its

extensive strand number and complex geometry, existing billboard
generation methods cannot be applied directly.

3 PROBLEM STATEMENT AND OVERVIEW
In this section, we first provide the problem statement, followed by
an overview of our pipeline.

Problem Statement. The input to our method is a strand-based
hairstyle modelH = {S𝑖 }, where each strand S𝑖 = {s𝑖, 𝑗 } is repre-
sented as a piecewise linear curve consisting of 𝑛𝑠 uniformly dis-
tributed samples s𝑖, 𝑗 (with the same distance between two consecu-
tive samples on each strand), along with a corresponding head mesh
Mhead. The output of our pipeline is a hair card modelMoutput =

⟨{C𝑖 }𝑛
𝑐

𝑖=1, {T𝑖 }
𝑛𝑡

𝑖=1⟩, composed of 𝑛𝑐 hair cards and 𝑛𝑡 textures to bal-
ance visual fidelity and performance constraints. In order to save
texture space, users oftentimes choose 𝑛𝑐 >> 𝑛𝑡 such that multiple
hair cards need to share the same texture. A hair card C𝑖 refers to a
quad strip with 𝑛𝑞 consecutive quads. Our objective is to ensure that
the synthesized hair card modelMoutput approximates the visual
appearance of the input H as closely as possible.

Overview. As illustrated in Fig. 2, our pipeline begins with hair
strand clustering (Sec. 4.1), where strands are grouped into 𝑛𝑐 clus-
ters based on a hair shape similarity metric. For each cluster, we
then optimize the card orientation to minimize visual error, pro-
ducing the initial card geometry (Sec. 4.2). Next, we introduce an
explicit card texture representation by projecting the 3D curves onto
a 2D texture space (Sec. 4.3). The generated hair textures are further
clustered into 𝑛𝑡 groups to facilitate texture sharing across cards
(Sec. 4.4). Finally, we jointly optimize the geometry and strands of
all hair cards to minimize the difference between H and Moutput

using differentiable rendering (Sec. 4.5). The optimized cards and
strands are then used to generate the final textures via rasterization.

4 METHOD
We revise the steps of our pipeline in this section.

4.1 Strand Clustering
Our method begins by clustering the input strandsH into a number
of subsets so each cluster can be represented as a hair card. We use
a clustering method proposed by [Wang et al. 2009]. Specifically, a
hair shape similarity metric is defined as 𝛾 (S𝑖 ,S𝑗 ) =

∑𝑛𝑠

𝑘=1 ∥s𝑖,𝑘 −
s𝑗,𝑘 ∥2

2/𝑛
𝑠 to quantify the sample-wise distance between two hair

strands S𝑖 and S𝑗 . Using this metric, we group H into clusters
{G𝑘 } with a k-mean clustering. Clearly, the center of each cluster
is a mean strand denoted as S̄𝑘 = {s̄𝑘,𝑗 } with samples being s̄𝑘,𝑗 =∑

S𝑖 ∈G𝑘
s𝑖, 𝑗/|G𝑘 |, where G𝑘 ⊆ H is a strand subset.

4.2 Card Geometry Initialization
Given the strand clusters G𝑘 , our next step is to initialize the hair
card and prepare for further optimization. We first initialize an
orthogonal frame along the mean strand and build initial card ge-
ometry. Then, we optimize orientation for each card to minimize
projection error.
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(a) Strands (b) Clustered strands (c) Optimized cards (d) Cards w/ exp. textures (e) Texture reduction (f) Final cards w/ textures
19.28/0.148/0.026 18.54/0.161/0.032 19.99/0.140/0.021

Fig. 2. Our pipeline: Given the strand-based hair model (a), we first cluster the strands based on their similarity (b). Then, we optimize the
orientation for each card (c) and create the corresponding card texture with explicit hair strand representation (d). After hair texture reduction (e),
we jointly optimize cards and strands to fine-tune the final result (f). •/•/• indicate averaged PSNR ↑, LPIPS ↓, and coverage error ↓, respectively.

Fig. 3. Example of hair clus-
ter and its hair strip as well
as per-sample frames.

Card Geometry Fitting. To initial-
ize the card geometry, we need to
build an orthogonal frame system
{t𝑘,𝑗 , n𝑘,𝑗 , b𝑘,𝑗 } at each sample s̄𝑘,𝑗
along the central strand S̄𝑘 , where
t𝑘,𝑗 , n𝑘,𝑗 , b𝑘,𝑗 are the tangent, nor-
mal, and binormal vectors, respec-
tively. The problem of building a
frame system for a 3D curve has
been thoroughly studied, for which
the standard construction is the
Frenet-Serret formulas. But this formula suffers from singular con-
figurations, and a more numerically stable choice is the Bishop
formulas [Bergou et al. 2008], which have been adopted in strand-
based hair simulation. Specifically, given the normal n𝑘,1 for the
first curve segment, the entire frame system can be computed by
solving the Bishop formulas, and we refer readers to [Bergou et al.
2008] for the piecewise linear discretization. Given the frame system,
we calculate the maximum distance from s̄𝑘,𝑗 to all corresponding
strand samples within the cluster along the binormal direction such
that:

𝑊𝑘,𝑗 = max
S𝑖 ∈G𝑘

��(s𝑖, 𝑗 − s̄𝑘,𝑗 ) · b𝑘,𝑗
�� . (1)

Then, the card is constructed by connecting all p±
𝑘,𝑗

= s̄𝑘,𝑗 ±𝑊𝑘,𝑗b𝑘,𝑗
along the positive and negative b𝑘,𝑗 at each s̄𝑘,𝑗 to form a quad strip
with 𝑛𝑠 quads. Finally, we downsample the quad strip to use only
𝑛𝑞 quads, leading to our card geometry C𝑘 as shown in Fig. 3.

Card Orientation Optimization. In the above discussion, we have
assumed that the root normal n𝑘,1 is given as the boundary condition
of the Bishop formulas. This root normal n𝑘,1 for the first card
segment needs to be carefully computed to provide a good initial
guess for further optimizations. We propose to optimize n𝑘,1 by
minimizing the difference between the strand cluster G𝑘 and the
hair card C𝑘 . To this end, we introduce the projection operator
sΓ
𝑖, 𝑗

= argmins∈C𝑘 ∥s − s𝑖, 𝑗 ∥ as finding the closest point s on the
quad strip of hair card C𝑘 , that is closest to s𝑖, 𝑗 . We then define the

projection error as follows:

𝐿proj =
∑︁

S𝑖 ∈G𝑘

∑︁
s𝑖,𝑗 ∈S𝑖

∥sΓ𝑖, 𝑗 − s𝑖, 𝑗 ∥ . (2)

Although the Bishop formulas are differentiable, the projection oper-
ator is non-differentiable, so gradient-based continuous optimization
is non-available to minimize 𝐿proj. Fortunately, the solution space
is rather small. Since Eq. 2 is independent for different cards and
due to the condition that n𝑖,1 is orthogonal to t𝑖,1, n𝑖,1 essentially
lies on a 3D circle. Therefore, we evenly sample a fixed number of
potential n𝑖,1 along the 3D circle and pick the direction leading to
the smallest value of Eq. 2. At this point, we have initialized all the
card geometries.

4.3 Explicit Hair Card Texture
In the standard rendering pipeline, textures are introduced for each
hair card to represent various attributes in the form of RGB im-
ages. However, the hair strands are extremely thin, and rasterizing
them into RGB textures would introduce severe aliasing error and
noisy gradient information. To mitigate this issue, we propose a
novel intermediary explicit hair card representation. Specifically,
each hair strand S𝑖 ∈ G𝑘 is first projected onto the quad strip C𝑘 .
Specifically, for each s𝑖, 𝑗 ∈ S𝑖 , we find the closest point sΓ𝑖, 𝑗 lying on
the associated quad strips C𝑘 . The corresponding 2D uv-coordinate
suv
𝑖, 𝑗

= (𝑢𝑖, 𝑗 , 𝑣𝑖, 𝑗 ) ∈ [0, 1]2 on the texture can be computed such that
the 3D world position of each sample s𝑖, 𝑗 can be reconstructed as:

s𝑖, 𝑗 = 𝑢𝑖, 𝑗p0
𝑖, 𝑗 + 𝑣𝑖, 𝑗p1

𝑖, 𝑗 + (1 − 𝑢𝑖, 𝑗 − 𝑣𝑖, 𝑗 )p2
𝑖, 𝑗 + 𝑧n★𝑖, 𝑗 , (3)

where p•
𝑖, 𝑗

are the vertices of the corresponding triangle face in
the card geometry that contains sΓ

𝑖, 𝑗
, n★

𝑖, 𝑗
is the normal of that tri-

angle, and 𝑧 ∈ R is the displacement along n★
𝑖, 𝑗
. Hence, each hair

card texture can be explicitly represented as a set of points {suv
𝑖, 𝑗
}

embedded within the uv-space. Using {suv
𝑖, 𝑗
} as our intermediary

representation induces two remarkable features. First, this represen-
tation is amenable to end-to-end differentiable rendering, while it
does not suffer from aliasing error induced by RGB images. Indeed,
for differentiable rendering, given the card mesh and explicit hair
card texture, 3D hair strands can be first recovered from Eq. 3. The
user-defined per-strand hair width is denoted as𝑤𝑖 . Each and every
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step of this procedure is differentiable, and a similar technique is
proposed in [Sklyarova et al. 2023]. Further, our representation can
be converted back to RGB images via rasterization. Finally, to avoid
uv-space tangent distortion by the card geometry in world space,
we decompose the tangent from strand geometry and store it as a
per-vertex 3D attribute denoted as {t3D

𝑖, 𝑗
}, which plays a central role

in the hair appearance model. The renderer can also produce depth
and coverage maps by utilizing depth and flat color as attributes for
each vertex.

4.4 Texture Reduction
To facilitate texture sharing and improve both memory efficiency
and runtime performance, users could optionally reduce the number
of textures before packing them into a texture atlas. Clusters with
similar strand counts and shapes are grouped to share the same
texture. Specifically, after the per-cluster optimization, we allow
users to provide the target texture number 𝑛𝑡 . We then perform
another round of k-means clustering to merge cards with similar
textures. To this end, we first rasterize the UV-space strands into
RGB textures and then compute the Learned Perceptual Image Patch
Similarity (LPIPS) metric [Zhang et al. 2018] between all pairs of card
textures. The LPIPS metric is used to guide our k-means clustering.
For each cluster, only the texture closest to the k-mean center is
retained, and it is reused across all hair cards within the same cluster.
After the clustering, our joint optimization would then fine-tune
the shared textures to collectively match the appearance.

4.5 Joint Optimization
After texture reduction, we perform another optimization with the
visual losses and geometric regularization to match the collective
visual appearance between the input strands H = {S𝑖 } and our
final cards {C𝑖 } with uv-space strands {suv

𝑖, 𝑗
} and tangent {t3D

𝑖, 𝑗
}.

Optimization. Given the differentiable renderer, we fine-tune
both the card geometry and strand textures for each cluster using
gradient-based optimization by solving the following optimization:

argmin
p±
𝑘,𝑗

, suv
𝑖,𝑗
, t3D

𝑖,𝑗
, 𝑤𝑖

∑︁
𝑣

𝜆𝑣𝐿𝑣 +
∑︁
𝑔

𝜆𝑔𝐿𝑔, (4)

where quad strip position p±
𝑘,𝑗

, strand texture coordinates suv
𝑖, 𝑗
, tan-

gent t3D
𝑖, 𝑗

, and per-strand width𝑤𝑖 are all included as decision vari-
ables. To ensure high output quality, we combine visual loss terms
𝑣 ∈ {tangent, depth, dice} and geometry regularization terms 𝑔 ∈
{match, collision}, which are detailed below.

Visual Losses. While our ultimate goal is to produce a hair card
model that looks identical to the input strand model, rendering com-
plicated light interactions between a large number of hair segments
is computationally intractable. In particular, the interaction between
light and a hair strand is described by the Bidirectional Curve Scat-
tering Distribution Function (BCSDF) denoted 𝑓 (𝜃𝑖 , 𝜙𝑖 , 𝜃𝑜 , 𝜙𝑜 ), as
proposed by Marschner et al. [2003]. Here, ⟨𝜃𝑖 , 𝜙𝑖 ⟩ and ⟨𝜃𝑜 , 𝜙𝑜 ⟩ rep-
resent the incoming and outgoing light directions, respectively. The
inclination angle 𝜃• represents the deviation from the strand normal
plane, while the azimuth angle 𝜙• captures the orientation around
the hair axis, both derived from the strand tangent. In order for more

efficient optimization, instead of matching the final appearance, our
optimization matches the tangent channel for shading and the depth
channel for strand position along the view direction. In particular,
tangent and depth losses are measured by the Mean-Squared Error
(MSE) over all views as:

𝐿𝑣 =

∫
S2

MSE
(
I𝑣 (H , 𝜔),I𝑣 (⟨C𝑘 , suv𝑖, 𝑗 , t

3D
𝑖, 𝑗 ,𝑤𝑖 ⟩, 𝜔)

)
𝑑𝜔, (5)

where I𝑣 (•, 𝜔) is the rendering function that rasterizes the chan-
nel 𝑣 ∈ {tangent, depth} of entities • under view direction 𝜔 . We
further add the following dice loss [Sudre et al. 2017] for matching
the silhouette:

𝐿dice =

∫
S2

1 − 𝐷
(
Imask (H , 𝜔),Imask (⟨C𝑘 , suv𝑖, 𝑗 ,𝑤𝑖 ⟩, 𝜔)

)
𝑑𝜔, (6)

where 𝐷 (𝐴, 𝐵) = 2|𝐴 ∩ 𝐵 |/( |𝐴| + |𝐵 |) is the Sørensen-Dice coeffi-
cient to quantify the similarity between two masks, 𝐴 and 𝐵, where
|𝐴| and |𝐵 | are the total number of pixels in 𝐴 and 𝐵, and |𝐴 ∩ 𝐵 | is
the common area between 𝐴 and 𝐵. For rendering the binary mask
image, we set all pixels to one in a zero background. Note that we
do not need the tangents t3D

𝑖, 𝑗
for mask rendering.

Geometric Regularization. For accurate visual appearance, we
treat t3D

𝑖, 𝑗
as a separate decision variable that is not bound to the

strand geometry. However, we still encourage the geometric defini-
tion of tangent is consistent with the optimized tangent direction,
via the regularization:

𝐿match =
∑︁
G𝑘

∑︁
S𝑖 ∈G𝑘

𝑁 𝑠∑︁
𝑗=1





t3D𝑖, 𝑗 − s𝑖, 𝑗+1 − s𝑖, 𝑗
∥s𝑖, 𝑗+1 − s𝑖, 𝑗 ∥





2
. (7)

Finally, we introduce a collision loss to prevent hair cards from
penetrating the head mesh, formulated as:

𝐿collision =
∑︁
G𝑘

𝑁 𝑠∑︁
𝑗=1

∑︁
•∈{+,−}

∥ min(0, SDF(p•
𝑘,𝑗

,Mhead))∥2, (8)

where SDF is the signed distance from a point to the head mesh.

Texture Baking. As our final step, after optimization, we rasterize
the UV-space strands and tangents into RGB-format textures to
generate the final tangent, depth, and alpha maps, as shown in Fig. 4.
Additionally, we bake an ambient occlusion (AO) texture to enhance
visual detail and store local lighting information on the hair cards.
We convert explicit hair card texture into 3D tubes in UV-space
and illuminate them with a directional light along the z-direction.
Next, we perform standard offline ray-traced AO baking, computing
surface color contributions after multiple light bounces. Finally, the
resulting shaded surface is projected back onto the card plane to
create the AO texture. Note that while it is possible to also optimize
the 𝑧 offset along the normal direction in Eq. 3, we found in practice
that keeping it fixed during optimization can provide sufficient
results.

4.6 Extensions
To enhance both the visual fidelity of our output and the practi-
cal usability of our pipeline, we introduce two additional optional
features.
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Tangent Depth Alpha AO

Fig. 4. Example of our output hair card textures

Crossed Cards. A common limitation of using billboards/cards is
that when the view direction becomes nearly parallel to the card
plane, the card appears invisible. To simulate hair volume and im-
prove visual fidelity from multiple viewing angles, we introduce
crossed hair cards during generation. Specifically, for each cluster,
we generate a pair of hair cards placed at a 90-degree angle to each
other, creating the illusion of volumetric hair using flat geometry,
as shown in Fig. 5. In practice, during the card generation stage
(Sec. 4.2), we simply create an additional card perpendicular to the
primary card at each segment by rotating both n𝑘,𝑗 and t𝑘,𝑗 over 90
degrees, giving a crossed configuration.

Strands UE cards Our cards Our crossed
Fig. 5. Compared with single cards fromUnreal Engine auto tool [Epic
Games 2025] and ours, our crossed cards can create a volumetric ap-
pearance, especially around the ponytail.

Hair Cap. Since hair cards alone may not fully cover the scalp
under certain camera angles or lighting conditions, particularly near
the roots, we construct a hair cap, a base layer of geometry and
texture applied to the scalp that simulates the appearance of short,
dense hair, so it can efficiently represent root fuzz and base hair
density with minimal computational cost. To create the hair cap
mesh and its associated texture, we begin by projecting all hair roots
onto their nearest faces on the head mesh Mhead. We then extract
all faces containing at least one hair root, along with their one-ring
neighboring faces, to form the hair cap mesh. In order to prevent
z-fighting during rendering, we slightly extrude the vertices of the
cap mesh along their normal directions by a small distance 𝜖cap.
Finally, for each strand, we extract the first sub-segment with a fixed
arc-length of 𝜖root and bake the sub-segment onto the scalp texture.

Strands Our crossed Our cap Our crossed + cap

Fig. 6. Our hair cap can improve the scalp coverage and hairline.

Specifically, we bake the tangent, alpha, and AO into three texture
channels as shown in Fig. 6.

5 IMPLEMENTATION DETAILS
This section provides a detailed description of the implementation
of our rendering pipeline employed in both the optimization stage
and the final results presentation.

Optimization Stage. After reconstructing all strand control points
using Eq. 3, the strands are rasterized into camera-oriented quad
strips with a user-defined strand width through Nvdiffrast [Laine
et al. 2020]. Since our optimization is guided by loss functions de-
fined over tangent, depth, and coverage, no hair BCSDF is employed
for shading. Instead, the renderer produces these G-buffer maps
with the corresponding attributes for evaluating the loss function.

Rendering Final Results. To ensure high-quality rendering results,
we employ an offline path tracing pipeline for final image genera-
tion. Hair appearance is modeled using the classical formulation of
hair BCSDF [Marschner et al. 2003], and the local frames are recon-
structed from tangent and depth textures during BCSDF sampling
and evaluation. Upon ray–card intersection, the alpha texture is
used to determine the strand occupancy at the texel level. Hair-hair
occlusion is separated into two stages: inter-card occlusion is di-
rectly resolved via ray tracing, while intra-card strand occlusion is
approximated using our precomputed AO texture.

6 RESULTS
We conduct all experiments on a system equipped with an AMD
Ryzen Threadripper 3970X 32-core CPU, 256 GB of memory, and
an NVIDIA RTX 3090 GPU. Our framework is implemented in Py-
Torch and customizes Nvdiffrast [Laine et al. 2020] as our backbone
differentiable render.

We evaluate our pipeline on a diverse set of hairstyles, including
short, bangs, straight, ponytail, bun, wavy, curly, and coily, from
MetaHuman [Epic Games 2021] and a dataset in previous high-
fidelity hair reconstruction work [Shen et al. 2023]. All hair models
are down-sampled to use 40K hair strands, each with 𝑛𝑠 = 32 sam-
ples. Following the hair card texture settings used in MetaHuman,
we set our output texture atlas size to 2048 × 2048, which accom-
modates 𝑛𝑡 = 4 × 8 = 32 individual hair card textures, each at a
resolution of 512 × 256 by default. The card orientation optimiza-
tion uses a screen size 128 × 128, while the joint optimization uses
256 × 256 to capture strand-level details. For card geometry fitting,
we sample 20 candidate normals evenly distributed along a positive
half-circle. During optimization, we uniformly sample 64 viewpoints
on the unit sphere, oriented toward the origin, to balance between
coverage and computational efficiency. We set 𝑛𝑞 to 31 for stan-
dard cards and 15 for cross cards, except for Afro, we use 48. To
assess the visual similarity to the input strand-based model, we
use three averaged metrics, as presented in Table 1. PSNR ↑ for
the shading evaluation, LPIPS ↓ for perceptual similarity, especially
high-frequency hair details, and coverage error ↓ for the hair sil-
houette. We also use chamfer distance ↓ to evaluate the geometric
accuracy. The average values of these metrics are computed over 12
uniformly distributed viewpoints around the hair.
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Table 1. Statistics about card # used in both our method and Unreal Engine’s auto cards, as well as the corresponding visual metric statistics, PSNR ↑, LPIPS
↓, coverage error ↓, and chamfer distance (CD) ↓. Crossed card is indicated by ×2.

Unreal Engine [Epic Games 2025] Ours
Model Fig. # Card # PSNR ↑ LPIPS ↓ Coverage ↓ CD ↓ PSNR ↑ LPIPS ↓ Coverage ↓ CD ↓
Ponytail 5 100×2 20.91 0.123 0.022 0.003 22.70 0.095 0.010 0.003
Short 6 100×2 22.34 0.112 0.014 0.007 23.51 0.100 0.010 0.004
Straight 7 100 17.39 0.230 0.038 0.005 18.21 0.176 0.034 0.005
Curly 9 400 18.54 0.153 0.038 0.005 20.89 0.138 0.016 0.005
Bangs 9 100 18.09 0.218 0.032 0.006 20.47 0.154 0.018 0.006
Blowout 9 200 17.16 0.200 0.038 0.005 20.44 0.162 0.017 0.005
Wavy 9 200 16.82 0.228 0.041 0.006 19.89 0.166 0.016 0.006
Bun 11 351 17.78 0.209 0.038 0.004 19.99 0.140 0.021 0.004
Braid 13 400 23.25 0.086 0.010 0.003 24.90 0.077 0.007 0.003
Fringe 14 100 18.47 0.166 0.036 0.007 19.24 0.158 0.029 0.008
Coily 17 400×2 17.90 0.174 0.032 0.007 19.09 0.131 0.022 0.007

Strands Unreal
Engine’s cards

Ours 16
textures

Ours 32
textures

Ours 64
textures

Reference 50/32,
16.97/0.270/0.048

50/16,
17.66/0.203/0.045

50/32,
17.99/0.184/0.40

N/A

100/64,
17.60/0.214/0.035

100/16,
18.03/0.192/0.035

100/32,
18.21/0.176/0.034

100/64,
18.51/0.165/0.029

200/64,
17.70/0.200/0.032

200/16,
18.99/0.159/0.027

200/32,
19.03/0.150/0.025

200/64,
19.38/0.138/0.021

Fig. 7. Comparison with results from UE automatic hair card gener-
ator [Epic Games 2025]. •/•, •/•/• indicate the number of cards, the
number of textures, averaged PSNR ↑, LPIPS ↓, and coverage error ↓,
respectively.

Ablation Study on Card # and Texture #. Fig. 7 presents a compari-
son between our method and Unreal Engine’s automatic hair card
generator [Epic Games 2025] under varying numbers of cards and
texture budgets. We evaluate results using 200, 100, and 50 cards,
targeting low-resolution LoD hair generation. For textures, we test
with 16 and 32 textures, following the industrial best practices for
texture budgeting. As expected, visual similarity to the reference
strand-based model decreases as the card and texture budgets are
reduced. Therefore, the key to creating a good hair model lies in
finding a balance between visual quality and geometric efficiency.

19.83 19.69 19.71
Strands Our total w/o tangent loss w/o depth loss

19.82 19.67 19.53
w/o collision loss w/o dice loss w/o match loss

Fig. 8. Ablation study on individual loss components. Removing any
of the proposed loss terms either degrades the visual quality or increases
the deviation from the strand-based model. • indicates PSNR ↑.

Nevertheless, our method consistently achieves higher visual fi-
delity in all three metrics, even when using fewer textures and only
50 cards.

Ablation Study on Losses. We further conduct an ablation study
on all loss and regularization terms on a straight hairstyle from
MetaHuman [Epic Games 2021] with 100 hair cards and 32 tex-
tures. As shown in Fig. 8, each component is necessary to achieve
consistent and accurate results. Unfortunately, due to the subpixel
nature of hair strands and their complicated geometries, traditional
image-based metrics such as MSE and PSNR cannot fully capture
the perceptual quality of hair. For instance, omitting tangent loss
often results in unnatural zigzag strands. Similarly, allowing cards
to intersect with the head may seem minor in visual metrics, but
it causes noticeable artifacts during simulation. For the rest of the
experiments, we adopt two sets of loss weights for different hair
types. For straight hair, we use 𝜆tangent = 10, 𝜆depth = 10, 𝜆dice = 5,
𝜆match = 3, and 𝜆collision = 1× 105. For curly hair, we use a different
configuration as 𝜆tangent = 5, 𝜆depth = 15, 𝜆dice = 3, 𝜆match = 3, and
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Strands UE cards Our cards
without cap

Our cards
with cap

Short 22.34/0.112/0.014 23.34/0.100/0.011 23.51/0.100/0.010

Bangs 18.09/0.218/0.032 20.38/0.154/0.019 20.47/0.154/0.018

Curly 18.54/0.153/0.038 20.75/0.138/0.018 20.89/0.138/0.016

Blowout 17.16/0.200/0.038 20.40/0.162/0.017 20.44/0.162/0.017

Wavy 16.82/0.228/0.041 19.89/0.166/0.018 19.89/0.166/0.016

Fig. 9. Our results outperform UE cards over a variety of hair styles,
including short, bangs, wavy, curly, and blowout, regardless of whether
with a hair cap or not.

𝜆collision = 1 × 105, to encourage more curl strands. Note that, due
to the inherent geometric differences between straight and curly
hair, we adopt two sets of configurations that work well across all
examples. We believe this choice does not compromise the general-
izability of our method.

Ablation Study on Hair Caps. Our results outperform Unreal En-
gine’s cards over a variety of hair styles, including short, bangs,
wavy, curly, and blowout, as shown in Fig. 9. The hair cap primarily
improves scalp coverage and hairline, but does not affect overall
hair silhouette. As for the geometry, hair cards inherently involve a
trade-off between visual fidelity and geometric accuracy. This work

Strands Init w/ UE cards Ours

17.27/0.232/0.046 19.30/0.158/0.027
Fig. 10. Ablation study on card initialization. Using UE cards as
initialization degrades the visual quality.

Strands Manual cards UE auto cards Our cards

17.71/0.279/0.044 17.78/0.209/0.038 19.99/0.140/0.021
Fig. 11. Comparison with Unreal Engine’s auto-generated and manu-
ally crafted cards. Our method outperforms the other two in all metrics
with the same 351 cards and 32 textures.

primarily aims to reproduce the overall appearance within a con-
strained geometric budget. Hair geometry that is barely visible con-
tributes little to appearance, so precise geometric accuracy in those
regions is less critical. For this reason, our pipeline is appearance-
driven, leveraging differentiable rendering to optimize hair cards
for visual similarity rather than exact geometry reproduction.

Ablation Study on Card Initialization. We conduct an ablation
study on card orientation optimization on Bun hairstyle fromMetaHu-
man [Epic Games 2021] with 200 hair cards and 32 textures. As
shown in Fig. 10, using cards generated from the UE automatic hair
card generator as the initial shape for our optimization results in a
degradation of visual quality, while our card geometry initialization
leads to better optimized results.
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Strands Input card Tex-based
w/o smooth

Tex-based
w/ smooth Ours

Fig. 12. Given input card and hair views from eight directions, di-
rectly optimizing texture leads to noisy results, while adding smooth-
ness loss eliminates high-frequency hair structure. Our strand-based
optimization avoids the above issues effectively.

Strands UE cards Our cards

23.25/0.086/0.010 24.90/0.077/0.007
Fig. 13. Our method applies equally well to complex structures such
as knots and braids.

Strands UE cards Our cards

Fringe 18.47/0.166/0.036 19.24/0.158/0.029

Fig. 14. Hair card extraction for strand-based hairs from multi-view
reconstruction [Zakharov et al. 2024].

Comparison with UE Auto-generated and Manual-crafted Cards.
We compare our results with the output of UE built-in automatic
hair card generation tool [Epic Games 2025] and artist-crafted hair
cards from MetaHuman [Epic Games 2021]. We compare with the
lowest LoD hair card model from MetaHuman, which only contains
351 cards and 20 textures. As shown in Fig. 11, using the same set
of 351 hair cards and 20 textures, our method achieves better visual
fidelity to the input strand-based model than both Unreal Engine
auto-generated and manual-crafted cards. While our higher PSNR
partly benefits from more accurate AO textures, as we preserve the
displacement during optimization, the lower LPIPS and coverage

Strands Our cards
Fig. 15. Comparison between simulating and rendering the input
strand-based model and our output hair card model in Unreal En-
gine [Epic Games 2021].

errors clearly demonstrate that our results more faithfully preserve
hair occupancy and shape.

Comparison with Optimizing Texture Directly. We validate the
necessity of our explicit strand representation by comparing it with
a conventional differentiable rendering pipeline that directly op-
timizes hair card textures using Nvdiffrast [Laine et al. 2020]. In
this experiment, we provide a fixed hair card geometry along with
tangent images from eight view directions. We then use Nvdiffrast
to optimize the texture mapped to the card so that its rendered
appearance matches the given tangent images as closely as possible
from those views. Although Nvdiffrast can produce hair textures
with distinct shape features when optimizing for a single view di-
rection, extending the optimization to multiple views leads to noisy
and inconsistent results. Introducing a smoothness loss can elim-
inate noise at the cost of losing high-frequency details, as shown
in Fig. 12. More importantly, this texture-based approach lacks the
spatial structure for computing ambient occlusion accurately, as
hair-to-hair spatial relationships are not preserved during texture
optimization.

Braid Styles. Fig. 2 demonstrates that buns can be grouped based
on their geometric and spatial similarity, a strategy that applies
equally well to complex structures such as knots and braids. Fig. 13
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Strands Ours, 20 cards Ours, 50 cards Ours, 100 cards Ours, 200 cards

20/16, 17.65/0.245/0.041 50/16, 17.66/0.203/0.045 100/16, 18.03/0.192/0.035 200/16, 18.99/0.159/0.027

Fig. 16. Using too few hair cards, for example, only 20, fails to adequately represent the hair structure, even for relatively simple straight styles.
As the number of cards increases, the overall fidelity of the hair representation improves. •/•, •/•/• indicate the number of cards, the number of
textures, averaged PSNR ↑, LPIPS ↓, and coverage error ↓, respectively.

shows another example of braided hairstyles, where our method
can produce hair cards that reproduce the braided style with a small
number of hair cards.

Strand-based Hairs from Multi-view Reconstruction. To further
validate the scope of application of our method, we test our method
on the strand model generated using the multi-view reconstruc-
tion [Zakharov et al. 2024]. As shown in Fig. 14, our method can
automatically extract hair cards from a reconstructed strand-based
fringe hairstyle.

Comparison with Strand Model in Game Engine. Fig. 15 demon-
strates that our hair cards can be used directly in Unreal Engine
with real-time rendering and simulation. Specifically, we generate
one guide hair per card for simulation and drive the deformation
of the hair cards using linear blend skinning (LBS) as mentioned
in [Hsu et al. 2024]. The strand-based model with approximately
50,000 strands requires 2.4 ms per frame for rendering, whereas our
card model only takes 0.8 ms for 512 hair cards. Please refer to the
supplemental video.

Cards Extraction Performance. Given input hair with 40K strands
with 𝑛𝑠 = 32 samples, the average process time of our card genera-
tion pipeline for cards with 100 cards and 32 textures is about 46
minutes, where joint optimization takes about 42% of the compu-
tation time. For a larger configuration of 400 cards with the same
number of textures, the total runtime increases to approximately 1
hour, with joint optimization comprising roughly one-third of the
computation time. In both cases, the optimization process converges
within roughly 200 epochs. Memory cost is about 7 GB for 100 cards
and 10 GB for 400 cards, respectively.

7 CONCLUSION
We have presented a fully automated pipeline for converting strand-
based hair models into efficient and visually compelling hair card
representations. By leveraging a differentiable rendering framework,
our method first clusters the hair strands to initialize card geome-
try and then clusters the hair textures to share, thereby reducing
memory cost. Finally, we conduct joint optimization over both card

geometry and textures. A key contribution of our approach is the
introduction of 2D curve-based texture encoding, which offers a
resolution-independent representation that effectively captures fine
strand details while remaining compatible with differentiable ren-
dering. Our method supports a wide range of hairstyles and lengths,
introducing mechanisms such as hair caps and crossed card gen-
eration to handle visually complex hair types, including short and
coily styles. Additionally, the ability to share textures across LoDs
makes our approach well-suited for real-time applications where
memory efficiency and performance are critical.

Limitations. Although our pipeline demonstrates strong perfor-
mance and visual fidelity across a range of hairstyles, several limita-
tions remain. First, optimization is conducted in multiple substeps
rather than as a fully end-to-end differentiable pipeline, which may
limit global consistency. Given the already large number of variables
to optimize (approximately 500K variables for the afro example),
increasing the number of strand control points would indeed im-
prove the representation capability of strands. However, this also
enlarges the solution space, making optimization more prone to
getting trapped in local minima. Second, the loss functions primarily
rely on visible attributes such as tangent alignment, depth, and mask
coverage. However, for complex hairstyles, especially those with
dense or layered structures, interior strand arrangements play an
important visual role and are not explicitly enforced. Besides, hair
cards, as a low-cost representation, have an inherent limitation in
that it is mostly for static and moderate animation in games. Under
large deformation, it can cause occlusion artifacts. Third, ourmethod
assumes a uniform hair color throughout the entire hairstyle, which
may not generalize well to stylized or multicolored hair. Finally,
hair type with highly curved geometry, such as coily hair, remains
a challenge. Theoretically, increasing the number of hair clusters
and card geometries makes it easier to represent complex hairstyles.
Ultimately, if we assign one card per strand, our pipeline would
always succeed. However, our goal is to strike a balance between
geometry and appearance. Fig. 16 shows that using too few hair
cards, for example, only 20, fails to adequately represent the hair
structure, even for relatively simple straight styles. As the number
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Strands Unreal Engine’s 800 cards Ours, 50×2 cards Ours, 400×2 cards Ours, 20000×2 cards

800/32, 17.90/0.174/0.032 50×2/32, 18.13/0.253/0.028 400×2/32, 19.09/0.131/0.022 20000×2/32, 21.45/0.093/0.011
Fig. 17. While our method can reproduce the appearance of coily hair with a relatively high number of cards (e.g., 20,000×2), it becomes
challenging to preserve fidelity when the number of cards is limited. •/•, •/•/• indicate the number of cards, the number of textures, averaged
PSNR ↑, LPIPS ↓, and coverage error ↓, respectively.

of cards increases, the overall fidelity of the hair representation
improves. Similarly, Fig. 17 demonstrates that our method struggles
to capture complex coily structures when both the number of hair
cards and control points are limited. However, with a sufficiently
large number of cards (e.g., 20,000×2), even intricate coily patterns
can be represented with fine detail.
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