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Visual-Preserving Mesh Repair
Zhongtian Zheng, Xifeng Gao, Zherong Pan, Wei Li, Peng-Shuai Wang, Guoping Wang∗, Kui Wu∗

Abstract—Mesh repair is a long-standing challenge in computer graphics and related fields. Converting defective meshes into
watertight manifold meshes can greatly benefit downstream applications such as geometric processing, simulation, fabrication,
learning, and synthesis. In this work, by assuming the model is visually correct, we first introduce three visual measures for visibility,
orientation, and openness, based on ray-tracing. We then present a novel mesh repair framework incorporating visual measures with
several critical steps, i.e., open surface closing, face reorientation, and global optimization, to effectively repair meshes with defects
(e.g., gaps, holes, self-intersections, degenerate elements, and inconsistent orientations) and preserve visual appearances. Our
method reduces unnecessary mesh complexity without compromising geometric accuracy or visual quality while preserving input
attributes such as UV coordinates for rendering. We evaluate our approach on hundreds of models randomly selected from ShapeNet
and Thingi10K, demonstrating its effectiveness and robustness compared to existing approaches.

Index Terms—Mesh repairing, geometry processing.
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1 INTRODUCTION

Meshes in games created by modelers often prioritize vi-
sual appearance over geometric and topological correct-
ness, leading to various defects like gaps, holes, self-
intersections, singular elements, and inconsistent orienta-
tions [1]. Additionally, raw data from online repositories,
like ShapeNet [2], may contain quality issues like duplicated
faces, self-intersections, and non-manifold elements. Due
to these issues, meshes with such defects become invalid
for downstream applications. Therefore, developing a ro-
bust mesh repair pipeline is essential. Three key properties
should be pertained during mesh repair, so it can facilitate
the downstream applications. First, the mesh should be man-
ifold to calculate differential quantities such as normals and
curvatures. Second, the mesh should be watertight to have a
well-defined interior and exterior volume. Finally, the mesh
should be repaired with minimal modification, preserving
the sharp features and UVs of the input mesh as much
as possible. These properties are crucial for simulation, 3D
printing, geometric Boolean operators, and learning-related
applications such as shape analysis and synthesis [3], [4]. Be-
sides the three features, robustness and efficiency are desirable
features that must be considered in mesh repair algorithms.

Despite the considerable research efforts invested in
mesh repair, the challenge of reliably converting a prob-
lematic mesh into a watertight manifold mesh, with the
input details and UVs preserved as much as possible,
remains unsolved. Broadly speaking, existing mesh repair
approaches can be categorized into two groups. Local ap-
proaches aim at addressing individual defects by analyzing
the geometry and topology of a local sub-mesh, as done
in [5], [6], [7], [8]. Local approaches can repair sparse defects
while preserving large portions of visual features, but they
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TABLE 1: Summary of related work. In each column, green
indicates the preferred property; red means the method lacks the
preferred property; yellow means the method has some, but not all
aspects of the preferred property. (Pres. for preserving)

Method Watertight Face # Pres. shape Pres. UV Memory Speed

PolyMender (PM) [12] Yes Low Medium No Low Fast
TetWild (TW) [10] Yes Low Low No Medium Slow
fTetWild (fTW) [15] Yes Low Low No Medium Medium
AlphaWrapping (AW) [13] Yes Medium Medium No Low Fast
ManifoldPlus (MP) [14] Yes High Low No Medium Fast
Takayama et al. (T14) [16] No Low High Yes Low Fast
VisualRepair (VR) [11] No Low High Yes Low Slow
VolumeMesher (VM) [9] Yes High Medium No Medium Fast
Ours Yes Low High Yes Medium Medium

often lack guarantees and may inadvertently introduce new
issues, e.g., self-intersections, during the repair process. In
recent years, researchers have turned their focus to global
techniques for superior robustness. On the downside, how-
ever, global methods can violate the minimal modification
requirement and oftentimes impair the defectless mesh parts
due to global conversions and remeshing, as noted in sur-
vey [1]. For example, recent works, VolumeMesher [9] and
TetWild [10] utilize a BSP tree to partition the ambient
space and close gaps and holes by solving a graph cut
problem or using winding numbers to filter out interior
and exterior volumes. Although these methods can guar-
antee watertight meshes, their results are sensitive to mis-
oriented input meshes. Indeed, a small mis-orientation or
nested structures can lead to drastically different output
with undesirable modifications to the visual appearance
(Fig. 1). In addition, the BSP tree can introduce a massive
number of unnecessary faces that are inherited in the output
mesh. On a parallel front, Chu et al. [11] proposed a surface-
based method in which patch orientation and connectivity
are globally optimized based on visual guidance, leading
to output with minimal modification. Unfortunately, their
method splits the inconsistent patches, resulting in gaps and
non-watertight open surfaces.

This paper proposes a mesh repair pipeline that com-
bines the merits of all prior local and global algorithms. Our
work is based on two observations. First, while artists may
inevitably create models with defects during the modeling
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Input with texture PolyMender [12] AlphaWrapping [13]

ManifoldPlus [14] VisualRepair [11] VolumeMesher [9]

VisualRepair + VolumeMesher Ours Ours with texture

Fig. 1: Comparison with existing methods: We compare mesh repair algorithms on the textured and mis-oriented input model from
ShapeNet [2]. None of the existing works can convert the input mesh into watertight manifold mesh while preserving the textures and
input details (see the zoom-in view of the engine).

process, the output model usually looks visually correct,
which can be a valuable measure to guide mesh repair.
Second, completely invisible components are not always
needed after repair, particularly within the context of graph-
ical applications, including rendering, level of detail (LOD)
generation, collision proxy generation, etc. Our key idea is to
guide the global graph cut algorithm using local visual cues.
Our method consists of three major steps. In our first (local)
step, we propose novel visual measures to quantify the
visibility, orientation, and openness of each face. We show
that these visual measures can be computed efficiently using
GPU ray tracing. Next, we rely on the orientation measure to
reorient the faces and use the openness measure to identify
and close open surfaces. These local adjustments bootstrap
the graph cut, providing well-conditioned initial guess and
solution space. Finally, inspired by VolumeMesher [9], our
global step divides the ambient space into polyhedral cells
and graph-cuts the interior cells from the exterior, guided
by our visual measures. Compared with existing repair
algorithms, our key innovations involve:

• A set of ray-tracing-based visual measures to fix
misorientations, detect open surfaces, and guide the
graph cut algorithm to produce watertight manifold
mesh while preserving visual cues.

• A constrained simplification post-process to remove
unnecessary split faces.

• A mesh repair algorithm preserves arbitrary at-
tributes defined on the input mesh, such as UV
coordinates.

We highlight the effectiveness and robustness of our method
on randomly chosen 1000 models from ShapeNet [2] and
400 models from Thingi10K [17], respectively. Our method
outperforms the state-of-the-art in terms of measurements
from various aspects such as Hausdorff distance, light field
distance (LFD), and PSNR.

2 RELATED WORK

We summarize the differences between our work and previ-
ous papers in Table 1. The problem of robustly repairing
digital 3D models has been a topic of research for over
two decades. For a more in-depth discussion of mesh repair
problems and solutions, we refer readers to comprehensive
surveys [18], [1]. In general, mesh repair involves remedying
the geometric and topological defects from the input mesh,
so the output mesh can be used in downstream applications
such as mesh processing and simulation. Recently, appli-
cations of mesh repair have expanded to 3D printing and
learning-related tasks, such as shape analysis and synthesis.

Mesh repairing methods can be broadly classified into
two categories: local and global approaches. Local ap-
proaches are suitable for input meshes with only sparse
defects and remedy the defects by only modifying the mesh
structures in a small vicinity. These methods have been
widely used to resolve manifold connectivity [19], [20], close
gaps [21], [5], fill holes [22], [6], remove degeneracy [7],
[23], and remove self-intersection [24], [8], [25]. Since local
approaches fix defects locally, they can preserve as many
details as possible, but lack guarantees and may introduce
new flaws, e.g., self-intersection.

To address the limitations of local mesh repair ap-
proaches, researchers have developed several global meth-
ods that leverage volumetric representations to distin-
guish between interior and exterior volumes, using flood-
filling [26], [27], line-of-sight information [28], [29], distance
diffusion [30], [31], [5], ray-stabbing [32], parity count-
ing [33], [12], morphology [5], [34], etc. These global meth-
ods offer greater robustness in resolving complex defects
such as gaps and holes while also ensuring high-quality
output. As an example, [12] proposed PolyMender, a vol-
umetric method based on the octree structure to patch
holes for arbitrary input meshes. However, the sharp feature
could be aliased due to the voxel-based representation.

Instead of using regular voxels, recent works [10], [9]
partition the space using a binary space partitioning (BSP)
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(a) Minput (b) Mreoriented (c) Moffset (d) Mpartition (f) Minterface (e) Msimplified

Fig. 2: Our mesh repair pipeline: Given the input mesh Minput (a), we first reorient the faces based on the orientation measure to
yield Mreoriented (b). Next, we identify the open faces based on the openness measure and add offsets to close the open faces and arrive
at Moffset (c). Then, we use BSP to partition within the ambient space, getting Mpartition (d), and solve a graph cut problem based on
visibility measure to obtain the interface surface Minterface (f), which is further simplified to remove the redundant faces and vertices
(red dot), yielding Msimplified (e).

tree [35] to align the polyhedral cells with the input poly-
gons, so that input-aligned outer shell can be obtained
by solving a global segmentation problem. For the input
mesh containing open surfaces, Tetwild [10] uses winding
number [36] to determine the interior and exterior space,
while volume mesher [9] solves a minimum graph cut
problem to minimize the total area of the output mesh, so
as to close the holes. The same graph cut strategy has been
used by [37], [38] as well. Unfortunately, these works are
based on the assumption that the input faces already have
the correct orientations or visibility. But consistent orienta-
tions are unavailable in casually collected 3D mesh datasets
such as ShapeNet [2]. The wrapping technique presented
by [13], [14] provides an alternative approach to repair
meshes without relying on face orientation. These methods
can produce a strictly enclosing mesh by shifting the faces
both inward and outward, but these approaches can corrupt
visually sharp features. In contrast, [11] proposes a method
that utilizes the rasterization pipeline to evaluate the visual
significance of each patch and performs a global optimiza-
tion to ensure consistent orientation and connectivity of the
patches. In cases of inconsistent faces, their method splits
them to guarantee a manifold output, creating many gaps
and holes. We notice that visual measures based on the
rasterization pipeline have been adopted in various prior
works [11], [39], [40], [16]. However, such visual measures
cannot account for indirect visibility. This issue is resolved
in our novel measures via multi-bounce ray-tracing, which
is further integrated into graph cut for visual-preserving
segmentation. Using GPU ray-tracing, our measures are also
faster to compute than rasterization, leading to improved
overall efficacy.

3 METHOD

We define a triangle mesh as M• ≜< V•,F• >, where
V• is a set of vertices and F• is a set of triangles con-
necting vertices. Our mesh repair algorithm requires the
input to be a triangle mesh Minput, which is assumed to be
visually satisfactory but comes with various geometric and
topological defects, including gaps, holes, self-intersection,
non-manifold elements, duplicated faces, and inconsistent
orientations. Our method generates an output mesh Moutput
that is guaranteed to be manifold and watertight, with as
few as possible modifications to the visual appearance of the
input. Our mesh repair pipeline is demonstrated in Fig. 2,
and we detail each step below.

3.1 Visual Measures
Since our input mesh is visually satisfactory, the visual cues
provide strong guidance to our repair algorithm. Therefore,
we propose three visual measures to quantify the visibil-
ity, orientability, and openness of each face, as illustrated
in Fig. 3 (a).

Invisible
Misorientated
Open surface

+
-

(a) (b)

Fig. 3: Given an input mesh (a) with misoriented faces, invisible
faces, and open faces, we sample directions (b) on the unit
hemisphere for the positive (+) and negative (−) side of the face,
and the arrow indicates the face normal.

We first uniformly sample each face f i
input, where the

number of sample points, Ns, depends on the face area
A(f i

input):

Ns(f
i
input) = max

{⌈
A(f i

input)

A(Minput)
Ntotal

⌉
, Nmin

}
, (1)

where A(•) indicates the surface area of input geometric
entity and Ntotal is the total sample number over the surface.
We set a minimum sample number Nmin to avoid under-
sampling and we use Si to indicate the set of all samples on
the face f i

input, so |Si| = Ns(f
i
input).

At each sample location, we then use uniformly sam-
pling [41] to generate Nd directions on the unit hemisphere
for positive side (+) and negative side (−) of the face,
as shown in Fig. 3 (b). Unlike conventional ray tracing,
which shoots rays from the camera, we shoot rays from
the sampled location along the sampled direction. When
a ray hits the surface, a random direction over the normal
hemisphere is picked as the reflection direction. We consider
a ray valid if the ray can hit the bounding box of Minput
within a given number of bounces Nb. At location p ∈ Si,
the total number of valid rays for positive and negative
sides of the face are N+

p and N−
p , respectively. For example,∑

p∈Si
(N+

p +N−
p ) > 0 means face f i

input is visible by at least
one of the rays.
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Utilizing N+
p and N−

p computed by ray-tracing, we
quantify the probability of f i

input being visible from outside
the mesh using the visibility measure defined as:

Φvisibility(f) =
maxp∈Si max{N+

p , N−
p }

Nd
, (2)

and we further classify f i
input as being visible if Φvisible(f

i
input) >

0.5. We further quantify the probability that f i
input is consistently

oriented via the orientation measure defined as:

Φorientation(f) =


∑

p∈Si (N
+
p −N−

p )∑
p∈Si (N

+
p +N−

p )
, if

∑
p∈Si

(N+
p +N−

p ) > 0

0, otherwise.
(3)

Φorientation = −1 means there is a large chance that the back
side face f i

input is much more visible than the front side, and
the face should be flipped. Finally, we consider the face an
open surface if it has high visibility from both sides, whose
probability is quantified by our openness measure:

Φopenness(f) =

maxp∈S̃i

min{N+
p ,N−

p }

max{N+
p ,N−

p }

N+
p +N−

p

2Nd
, if S̃i ̸= ∅

0, otherwise.
(4)

where S̃i ⊂ Si indicates the visible samples of the face.
We have Φopenness(f

i
input) ∈ [0, 1], and a higher measure

indicates f i
input is more likely to be an open thin shell.

3.2 Orientation Adjustment
Guided by Φorientation, our algorithm locally adjusts the
misoriented faces as much as possible, which leads to the
better performance of the follow-up global graph cut step.
To this end, we first remove the duplicated faces sharing
the same vertices. We then group input faces into patches
Pj

input = {f ji
input} using a flood fill algorithm, such that faces

sharing an edge and having consistent orientations will be
grouped into the same patch. Next, we calculate a weighted
average orientation measure over each patch Pj , which is
defined as:

Φorientation(Pj
input) =


∑

f∈P̃j A(f)Φorientation(f)∑
f∈P̃j A(f)

, if P̃j
input ̸= ∅

0, otherwise,
(5)

where P̃j
input ⊂ Pj

input indicates the visible set of faces
in the patch Pj

input. Finally, we flip the patch Pj
input if

Φorientation(Pj
input) < 0. Note that for nearly open patches

with high visibility measures from both sides, its orientation
measure is close to zero, meaning there is no preference
for its orientation. The output of this step is denoted as
Mreoriented.

3.3 Offsetting Open Surface
For the graph cut algorithm to close open surfaces with min-
imal visual modification, our method offsets the open faces
by a small distance. Although graph cut algorithms can
find watertight meshes even without such offset, as done
in VolumeMesher [9], it can introduce large unnecessary
volumes as demonstrated in Fig. 4 (ab), impairing the visual
appearance. Again, our first step is identifying the open sur-
faces as guided by Φopenness. Unlike the orientation adjust-
ment step, we cannot identify open surfaces in a patchwise
manner because a patch may contain inner structures and
self-intersections. Instead, we classify each face f i

reoriented as
an open surface if Φopeness(f

i
reoriented) > ϵopeness, where ϵopeness

is an openness threshold to control the preservation of thin
shells. However, offsetting each open face would create too
many volumetric cells for the graph cut algorithm, slowing
down the overall algorithm. Therefore, after open faces are
classified, we group connected, consistent-oriented, open
faces into open patches. We offset the vertices on the patch
along the negative normal direction with a user-defined
distance doffset to create thin volumetric shells, as shown
in Fig. 4 (c). The vertex normal is the average normal of
adjacent face normals weighted by the face area. Note that,
in the case of non-orientable meshes, such as the Mobius
strip, grouping neighboring open faces can end up with
non-manifold edges with a zero normal vector. In this case,
we offset vertices on the non-manifold edge along each
adjacent face normal (Fig. 4 (d)). The output of this step
is denoted as Moffset.

(a) (b) (c)
Fig. 4: If offset is not applied to the open surface for the example
in Fig. 2, we end up with Mpartition in (a) and Minterface in
(b), where a large piece of unnecessary volume is introduced,
impairing visual appearance. Instead, we offset vertices of the open
surface to form a closed thin shell (c), with offset faces denoted as
dashed lines.

3.4 Space Partition
After offsetting open faces, Moffset may still contain gaps
between patches that are not identified as open surfaces.
Following the previous work [9], we adopt the global step
by partitioning the ambient space and solving the graph cut
problem to find the interface mesh that closes all gaps.

We initialize the partitioned mesh via a Delaunay tetra-
hedrization of the vertex set Voffset. However, such tetra-
hedrization cannot ensure all the input faces are included in
Fpartition. Therefore, we iteratively split the initial partition
mesh using two sets of splitting faces in the same way as
constructing the BSP tree. The first set is all the faces in
Foffset. Including all of Foffset ensures geometric fidelity, but
this is not enough to preserve user-defined surface attributes
such as UV coordinates and material IDs. This is because
certain edges are shared by two co-planar faces, which are
recognized as a single large face by the BSP data structure.
The default BSP construction algorithm will erroneously
remove such edges from the data structure. Unlike [9], We
additionally use an arbitrary face passing through the edge
to split the partition mesh. By that, if the two neighboring
faces have discontinuous surface attributions, we require
their shared edge to be included in the BSP data structure.

To make the iterative partition process unconditionally
robust, we use exact arithmetic during splitting [9] via LPI
(Line-Plane Intersection), and TPI (Three-Planes Intersec-
tion) [42], [43] for fast exact constructions. This step yields
the partitioned mesh Mpartition.
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(a) (b) (c) (d)

Fig. 5: Example of graph cut: Black dots represent cell nodes, and dashed lines represent the edges between cells. Given the input
mesh (a), green and red segments represent visible and invisible faces, respectively, and there is no edge over these visible and invisible
faces. After solving the graph cut, the extracted mesh is in green (b). If we keep the edges across invisible faces (c), the graph cut can
return an erroneously extracted mesh that closes the entire mesh (d).

In order to preserve the surface attributions, e.g., UV
coordinates, material IDs, etc., we need to maintain a map-
ping M : Fpartition → Finput. Since we use exact arithmetic,
M(f i

partition) can be determined by checking whether the
barycenter of f i

partition lies exactly on some f j
input, following

the strategy used in VolumeMesher [9]. Due to the choice of
our splitting surfaces, M is well-defined, i.e., each f i

partition

is either contained in some f j
input or does not belong to any

face of Fpartition (in which case we let M(f i
partition) ≜ ∅).

3.5 Interface Mesh Extraction

To perform the global graph cut, we first refine the face
orientation (Section 3.5.1) based on Mpartition. Next, we uti-
lize the visibility measure to classify each face in Fpartition
(Section 3.5.2). These measures will be used to formulate
the objective function in the graph cut (Section 3.5.3) to de-
termine the interior/exterior cells, whose interface surface
will be the watertight mesh Minterface.

3.5.1 Face Reorientation
We use a similar procedure as Section 3.2 to reorient
Fpartition. Specifically, we use a flood fill strategy to group
faces in Fpartition into patches, such that no patch contains
non-manifold edges, meaning each edge always has lower
than two adjacent faces from the same patch (illustrated in
Fig. 6). Two patches can be merged if they are co-planar,
have consistent orientation, and have no non-manifold edge
after merging. Then, we reorient each patch based on orien-
tation measure Φorientation(Pj

partition) as defined in Section 3.2.

(a) (b) (c)
Fig. 6: Given an input mesh (a) with two intersected patches, our
extracted Mpartition (b) contains a non-manifold edge shared by the
intersected patches. Starting from isolated faces, we group patches
with non-manifold edges labeled by different colors in (c).

3.5.2 Face Classification
We use the procedure in Section 3.1 to compute the visibility
measure for each face in Fpartition. As a result, Fpartition can

be classified into three groups: visible faces, invisible faces,
and extra faces:

Fvisible
partition ≜ {f ∈ Fparition is visible ∧M(f) ̸= ∅}

F invisible
partition ≜ {f ∈ Fparition is invisible ∧M(f) ̸= ∅}

F extra
partition ≜ Fpartition −Fvisible

partition −F invisible
partition .

To form the watertight interface surface, our goal is to use
as many visible faces and as few extra faces as possible.

3.5.3 Cell Classification
We treat each cell in the BSP tree as a node in graph G that
can be labeled as either interior or exterior. Each facet of a
cell corresponds to an edge in G, but no edge is created for
mappable faces (M(f i

partition) ̸= ∅), no matter whether the
face is visible or invisible as shown in Fig. 5.

The faces bordering the interior and exterior cells are
guaranteed to form a watertight mesh. We solve for a set of
cell labels li to produce the interface mesh that maximizes
the use of visible faces while minimizing extra faces, which
can be formulated as the following minimal cut problem:

E(L) =
∑
li

D(li) +
∑
eij

S(li, lj), (6)

where li ∈ {I, E} indicates the ith cell ci to be either Interior
or Exterior. In Eq. 6, the first data cost is formulated as:

D(li) =

{∑
f⊂ci∧f∈Fvisible

partition∧f has inward normal A(f) if li = I∑
f⊂ci∧f∈Fvisible

partition∧f has outward normal A(f) if li = E
. (7)

In other words, D(li) penalizes incorrectly oriented
faces. If a cell ci is chosen to be interior, then its visible faces
should have normals facing outward. Similarly, an exterior
cell ci should have visible faces facing inward. Intentionally,
we exclude invisible faces’ orientation from D(li) to prevent
potential bias introduced by those invisible faces within the
model.

The second edge cost simply penalizes the use of any
extra faces, defined as:

S(li, lj) =

{
A(f), if f ⊂ ci ∩ cj ∧ f ∈ Fextra

partition ∧ li ̸= lj

0, otherwise
. (8)

Notice that we remove dual edges across invisible faces so
that the partition result could follow the input geometry in
case of inadequate measuring samples.

It is well-known that, as long as the regular condi-
tion [44] S(I, I) + S(E,E) ≤ S(I, E) + S(E, I) holds, the
problem of binary graph cut has a polynomial complexity
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algorithm. It is trivial to see the regular condition holds in
our case as S(I, I) = S(E,E) = 0 and S(I, E) = S(E, I) ≥
0. The output of this step is denoted as Minterface.

3.6 Constrained Simplification
Although our global step guarantees a watertight output, it
could also incur many redundant, small facets. We could
remove them using conventional mesh simplifiers, e.g.,
QEM-based mesh reduction [45]. However, these methods
would lead to inverted faces or incur expensive computa-
tion to check for inverted faces at each simplification step.
Instead, we introduce a constrained mesh simplification to
reduce Minterface. We first detect the geometric and UV patch
boundaries (Section 3.6.1) and then re-triangulate each patch
(Section 3.6.2) to significantly reduce the face number while
complying with detected boundaries.

3.6.1 Boundary Detection
We use a flood fill strategy to group adjacent co-planar
faces with consistent orientation from Finterface into manifold
patches {Pj

interface}. There are two types of boundaries we
want to preserve during the simplification. The first type
is geometric boundary edges Egeometric that are shared by at
least two patches. Preserving geometric boundaries edges
can ensure that the simplified mesh is identical to Minterface
geometrically.

Additionally, we preserve UV boundary edges EUV,
whose UV coordinates lie on the border of the UV map. EUV
are represented as a tuple of two vertices from Vinterface. Dur-
ing partition, these UV boundaries could be split into seg-
ments, and invisible ones are discarded to make Minterface
manifold and watertight, as shown in Fig. 7. We use the in-
tersection between the origin UV and geometric boundaries
to find these segments, which uses the rational number to
ensure accuracy.

(a) (b)

Fig. 7: Given two intersecting boxes as the input mesh (a), there is
a UV boundary edge in red. Our method still preserves that edge
in the extracted mesh Minterface (b). As the interior part is removed
to from the watertight manifold output mesh, that UV boundary
edge is split into segments and some segments are discarded.

3.6.2 Constrained Triangulation
Our constrained triangulation complies with the geometry
and texture boundaries found in the previous step. We first
use edge-collapse to remove any vertex, whose degree is
two and adjacent to co-linear edges in Egeometric ∪EUV. Then,
we add a sanity check to prevent any self-intersection before
performing the collapse operation. In particular, we check if
the resulting faces intersect with all other faces within the
extended bounding box of Pi with extended length lextended
before each ear-cut operation. Then, we use the constrained
ear-cut triangulation [46] that obeys geometry and texture

boundaries for each patch Pj
interface. After triangulation, we

get the simplified mesh Msimplified with much fewer faces
and vertices. It should be noted that both edge collapse
and ear-cut triangulation techniques introduce no new ver-
tices, operating solely within the interior of edges or faces.
Consequently, these processes do not introduce any self-
intersection.

3.7 Topological Correction

It is worth noting that the extracted mesh from Section 3.5.2
is a watertight combinatorial 3-manifold with boundary [9],
meaning that it may contain non-manifold edges and ver-
tices. In this case, we split these non-manifold edges and
vertices to recover manifoldness. As our edge collapse and
triangulation always produce edges with an even number of
adjacent triangles, our method is guaranteed to output wa-
tertight and manifold meshes [47], [20]. A proof is provided
in the supplemental document. The output mesh is denoted
as Msimplified.

3.8 Recovering Surface Attributes

There are three types of faces in Fsimplified: inherited faces
from Foutput, offset faces due to Section 3.3, and extra faces
defined in Section 3.5. We recover inherited faces’ attributes
from Minput using barycentric interpolation. The offset faces’
attributes are copied from their original faces. In our exper-
iment, most faces can be traced back to their original faces.
However, for those extra faces created for closing holes and
gaps, we do not have prior knowledge. To assign surface
attributes, we perform a flood fill and iteratively set the
attributes of extra faces by averaging from their one-ring
neighboring vertices.

4 RESULTS

We implement our framework in C++ with CGAL, libigl,
and Eigen. We use Optix [48] to compute visual metrics
via ray tracing on GPU and a fast approximate energy
minimization solver [49] to solve the graph cut. We did all
experiments on a computer with an AMD Ryzen Threadrip-
per 3970X 32-core Processor at 3.69 GHz and 256 GB RAM.
We use Ntotal = 2e7, which is sufficiently large for over-
sampling all the models in our input dataset, and Nmin = 5
for good coverage of mesh surface, and sample Nd = 5
directions on the unit hemisphere for both sides of f i

input.
Each ray has a maximum bounce number Nb = 10. We
use openness threshold ϵopenness = 0.5 to achieve a balance
between preserving thin shells and filling holes. The offset
distance doffset = D/20000 is used to control the thickness
of the thin shells, and D is the diagonal length of the
model’s bounding box. For the ear-cut triangulation used
in constrained simplification, an extension distance is set as
lextended = D/1000. We also provide a summary of notations
in Table 2.

We compare our method with several state-of-the-art
mesh repair methods, including PolyMender (PM) [12],
TetWild (TW) [10], fTetWild (fTW) [15], VisualRepair
(VR) [11], VolumeMesher (VM) [9], combining of VisualRe-
pair and VolumeMesher (VR+VM), combining of Takayama
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Chair PM (2K,0.10,16882,25.0) TW (0K,0.50,60968,23.5) fTW (8K,0.12,15868,23.8) AW (24K,0.01,2860,26.8) MP (457K,0.01,2868,18.1)

T14+VM (168K,0.01,56,48.4) VR (14K,0.01,3484,30.8) VM (125K,0.03,2368,31.8) VR+VM (66K,0.01,3492,30.8) Ours (20K,0.01,6,51.4)

Flowers PM (44K,0.05,2534,23.7) TW (409K,0.03,1068,24.5) fTW (312K,0.03,1662,24.3) AW (99K,0.02,912,25.7) MP (5486K,0.01,168,21.8)

T14+VM (1675K,0.04,1328,28.3) VR (640K,0.01,0,22.7) VM (1316K,0.04,1482,27.4) VR+VM (1794K,0.04,1492,27.4) Ours (1483K,0.01,12,45.3)

Roman PM (18K,0.09,450,25.8) TW (46K,0.02,954,28.1) fTW (46K,0.02,632,23.9) AW (53K,0.02,42,33.9) MP (312K,0.02,10,21.0)

T14+VM (31K,0.05,4,40.5) VR (12K,0.003,0,31.9) VM (32K,0.05,2,38.8) VR+VM (35K,0.05,4,38.9) Ours (14K,0.01,0,49.6)

Fig. 8: Results: We choose “Chair”, “Flowers”, and “Roman” to demonstrate the issues of existing methods and our superiority over
them. (•, •, •, •) indicates face number, Hausdorff distance, LFD, and PSNR.

TABLE 2: Summary of notations

Notations Descriptions
M• =< V•,F• > Mesh • with vertices V• and face F•
vi• ∈ V• Mesh vertex
f i
• ∈ F• Mesh face

Pj
• = {fji

• } Patch of faces
Ej
• = {(vj0• , vj1• )} Edge set

A(·) Face area
Adj(·) Adjacent faces
| · | Cardinality of a discrete set
Φvisibility(f

i
•) Visibility score of face

Φorientation(f i
•) Orientation score of face

Φopenness(f i
•) Openness score of face

et al. [16] and VolumeMesher (T14+VM), and AlphaWrap-
ping (AW) [13] (we use hyper-parameters α = D/100,
δ = D/3000 for AW as suggested in their work) on
randomly chosen 1000 models from ShapeNet [2] and 400
models from Thingi10K [17]. All results can be found in
https://github.com/VisualGuidedMeshRepair/dataset. We
evaluate the result quality with three qualitative metrics,
Hausdorff distance (HD), light-field distance (LFD), and

peak signal-to-noise ratio (PSNR). Notably, we render the
input mesh with double face rendering as the reference and
render others’ and our results with the back face colored
in black. The resulting statistics are collected in Table 3,
and we pick four examples (“Chair” and “Table” are from
ShapeNet) to demonstrate the issues of the existing methods
in Fig. 8 and Fig. 9. Note that for the “Chair” model, TW’s
result loses a large portion of the shape due to the mis-
oriented input faces.

Watertightness, Manifoldness, and Number of Faces.
Unlike VR [11], our proposed method guarantees a water-
tight and manifold output, which only subtracts the input
mesh without filling gaps and holes. Other approaches, such
as TW and VM, only ensure a combinatorial 3-manifold with
boundary output that may contain non-manifold edges.
Moreover, VM’s output is unnecessarily complex due to
BSP partitioning, resulting in tripling the number of faces
in Minput. In contrast, our constrained simplification step
significantly reduces the face count to approximately the
same level as Minput.

HD, LFD, and PSNR. Due to misorientation of the input

https://github.com/VisualGuidedMeshRepair/dataset
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Input PolyMender (9K,0.05,4158,22.3) TetWild (18,0.29,51862,19.9) fTetWild (7K,0.12,5074,22.3)

AlphaWrapping (40K,0.01,164,31.8) ManifoldPlus (158K,0.003,160,22.9) T14+VM (6K,0.03,394,31.6) VisualRepair (2K,0.001,0,23.3)

VolumeMesher (6K,0.04,2484,26.4) VR+VM (8K,0.03,400,32.6) Ours (2K,0.001,0,56.5) Ours with texture (2K,0.001,0,51.5)

Fig. 9: Table: We choose “Table” to demonstrate the issues of existing methods and our superiority over them. (•, •, •, •) indicates
face number, Hausdorff distance, LFD, and PSNR.

TABLE 3: Statistics of 1000 models from ShapeNet and 400 models of Thingi10K, including the percentage of results that are finished
within 1 hour, watertight and manifold, respectively, and average face number, HD, LFD, PSNR, peak memory, and time usage.
Smaller values are more desired for all listed numerical metrics except PSNR. ∗ indicates PNSR of our result with UVs, while all other
methods do not have UVs. Note that Models in Thingi10K do not have UVs.

ShapeNet
Finishes (< 1h) Watertight Manifold Face # HD LFD PSNR Mem. Time (s)

Input – 82% 2% 32K – – – – –
PM 100% 100% 100% 14K 0.06 2.2e3 29.0 7 MB 0.4
TW 99.5% 100% 23% 4K 0.18 3.5e4 22.2 943 MB 259.4
fTW 99.7% 100% 100% 10K 0.18 1.3e4 26.3 714 MB 114.8
AW 100% 100% 100% 34K 0.03 2.3e2 35.3 96 MB 6.0
VR 97.9% 18% 100% 22K 0.02 1.0e1 48.1 111 MB 176.7
VM 100% 100% 16% 95K 0.05 1.4e3 32.8 313 MB 3.6
VR+VM 97.9% 100% 37% 180K 0.03 2.0e2 49.4 381 MB 186.8
MP 100% 100% 100% 325K 0.02 8.0e1 36.9 217 MB 3.8
T14+VM 100% 100% 31% 117K 0.03 2.4e2 46.6 299 MB 11.8
Ours 100% 100% 100% 29K 0.02 1.0e0 58.9 (58.8∗) 722 MB 16.9

Thingi10K
Input – 5% 97% 40K – – – – –
PM 100% 100% 100% 17K 0.02 9.5e2 31.7 8 MB 0.9
TW 100% 100% 87% 13K 0.006 3.3e2 47.9 213 MB 77.7
fTW 100% 100% 100% 10K 0.006 3.3e2 46.3 143 MB 24.0
AW 100% 100% 100% 27K 0.014 1.1e2 37.2 88 MB 4.4
VR 90% 66% 92% 34K 0.0001 5.0e-2 67.9 149 MB 406.2
VM 100% 100% 81% 128K 0.006 1.9e2 64.1 258 MB 4.4
VR+VM 90% 100% 84% 119K 0.003 7.7e1 65.2 259 MB 411.4
MP 100% 100% 100% 416K 0.006 3.8e1 50.8 274 MB 7.8
T14+VM 98% 100% 75% 110K 0.004 9.0e0 64.1 237 MB 24.9
Ours 100% 100% 100% 36K 0.001 5.5e0 66.7 755 MB 26.7

from ShapeNet, methods that rely on input orientations to
determine the interior and exterior, such as PM, TW, fTW,
and VM, cannot produce a result even close to the input.
Additionally, “Flowers” in Fig. 8 demonstrate that VM
might close the surface with lots of unnecessary volumes
for the open faces. VM also fails to close the court due to the
open surface under the eave in “Roman”, and VM always
solves for the smallest surface area, which might close
the concave structure. On the other hand, AlphaWrapping,
which does not require consistent orientation, can suffer
from the blurring of input geometric details and sharp

features if the surface is offset by a large distance. PM fails
to preserve sharp features due to limited octree resolution
(see “Chair”). For ShapeNet, although VR scores well in
HD and LFD, its optimization cannot ensure correct patch
orientation across the entire mesh, resulting in a low PSNR
score, for which one reason is that visual measures in PM
are based on rasterization, which may not capture small or
occluded faces accurately, such as the frames on the chair
(Fig. 8) and engine on the plane (Fig. 1).

For the models in Thingi10K, which does not have
complex interior structure, only VR can get better
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HD/LFD/PSNR than ours; there are 40 out of 400 models
that VR cannot produce the results within 1 hour due to
the high input face number. For a more fair comparison,
we manually tune the parameters of fTW, PM, and AW to
match the same face number with ours for the “Flower”
example. Unfortunately, fTW is out of 64G memory. More
importantly, fTW cannot handle open faces or complex
nested structures as shown in Fig. 10, as it uses the winding
number to determine the interior/exterior..

Fig. 10: Example of winding number: left, the winding number
(visualized by color) of a nested input disrupted by inner struc-
tures; right, our target output.

Given the same face number, HD/LFD/PSNR of PM
(0.025/1492/20.1) and AW (0.01/200/25.8) are still worse
than ours (0.01/12/45.3). We further tune AW and manage
to produce a similar HD and LFD as ours. However, even
with 10x more faces, AW (0.01/56/30.4) is still unable to
achieve a similar quality. In summary, our method out-
performs all listed state-of-the-art techniques. In addition,
unlike other methods, our method can close the hole and
propagate UV for the newly added faces from neighboring
faces, as shown in Fig. 11.

O
ur

s
In

pu
t

Fig. 11: Example of UV recovering: Top, Input textured model
with holes; bottom, Our repaired model, with holes filled and UV
recovered.

Memory and Time Usage. Due to offset faces and
extra cuts for boundary edges, ours need more memory
and computational time than VM. Fortunately, our visual
evaluation step is based on ray tracing where multi-bounce
offers a much more efficient space exploration than VR [11].
We also plot the time breakdown of our pipeline in Fig. 12,
where our ray-tracing step only takes 7% of the computa-
tion time. Boundary detection occupies almost one-third of
the computation time due to using rational numbers. Our
processing time does not solely depend on mesh size. The
complexity of the input, the number of intersection faces,
and the size of the output all have impacts.

32.7%31.7%

22.6% 7.35%

2.56%
1.98%
1.09%

Partition
Boundary Detection
Graph Cut
Ray Casting
Triangulation
UV and Topology
Preprocessing

Fig. 12: Time breakdown

Compared to VR+VM and T14+VM. As previously
stated, VM is a volumetric approach that can generate a
mesh without holes, yet it relies on correct input orientation.
In contrast, VR and T14 can adjust orientation but are unable
to fill gaps. Therefore, we use VR and T14 to orientate
the faces and use VM to mend the topology, denoted as
VR+VM and T14+VM. As anticipated, these approaches
perform better in PSNR than any other existing technique
that guarantees watertightness. Nevertheless, the resulting
mesh contains numerous faces due to the additional face
division caused by VR. Furthermore, our method achieves
around 10 PSNR advantages over the VR+VM and T14+VM
approaches. One reason is that our method incorporates
visual guidance throughout the entire repair process and
optimization procedure. On the other hand, VR+VM and
T14+VM only apply the visual metric to the surface opti-
mization step, i.e., the graph cut stage; thus, it has not fully
exploited the critical visual cues. For instance, in “Chair”
example, since the rasterization cannot capture tiny faces,
VR and T14 cannot correct all face orientations, which
leads to incorrect output from VM. The same issue can
be observed in Fig. 1 as well. For “Table” in Fig. 8, VM,
VR+VM, and T14+VM all discard part of the table because
the graph cut in VM solves for the minimal surface area,
which is not always the case.

Maximum Bounce Number Nb. The maximum bounce
number Nb governs the ray-tracing process’s ability to
navigate complex structures. When Nb = 0, no bounces
are allowed, potentially misguiding the representation of
hard-to-see structures. Conversely, when Nb = 10, the
exploration is thorough, facilitated by multiple reflections.
We conducted tests with varying max bounce numbers
using the 500 models from ShapeNet [2]. For Nb =0, 1,
2, 3, 5, and 10, we obtained HD/LFD/PSNR values of
0.03/3.3/57.1, 0.02/2.0/58.3, 0.02/0.9/59.1, 0.02/0.7/59.5,
and 0.02/0.7/60.2, respectively. Subsequently, we employed
Nb = 10 for all subsequent experiments in this paper.

Hard-to-see Structure. The combination of ray casting
and graph cut makes our method robustly handle complex
structures. It is worth noting that, for the case that is hard
to see, we design our graph cut to respect the input surface
geometry. As shown in Fig. 13, we tested our method on
a Hilbert Cube from Thingi10K using default parameters
Nb = 10 and Ntotal = 2 × 107 to obtain the complete visual
guidance and Nb = 0 and Ntotal = 2 × 103 to obtain only
partial visual guidance. Under default parameters, multiple
reflections enable a comprehensive exploration of hard-to-
see structures. On the other hand, no bounce can only
provide partial visual guidance, while breaking edges for
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Visibility Results
Fig. 13: Example of dealing with hard-to-see structures: The
Hilbert Cube model from Thingi10K exhibits intricate structures.
The visibility (left) and the outcomes (right) of our method under
complete visual guidance (top) and partial visual guidance (bot-
tom) are shown. Blue indicates visible faces, while Red represents
faces not visible by the ray with zero bounces. Remarkably, in both
scenarios, our approach achieves zero HD.

invisible faces in the graph cut process allows our method
to respect input geometry. In both cases, the output meshes
have zero HD, meaning our results are geometrically iden-
tical to the input mesh.

Orientation and Offset. Our method utilizes an orienta-
tion measure to guide the orientation and offset direction. In
the case of non-orientable surfaces, such as the Möbius strip
(Fig. 14), our method offsets the surface in two directions for
non-orientable edges, creating a valid solid shell. We used
doffset = D/200 to make the results more pronounced.

Input Ours

Fig. 14: Example of non-orientable surface

Input Ours

Fig. 15: Example of preserving hole
Preserving Holes. Although our method closes the hole

and converts the large open surface into a thin shell by de-
fault, our system allows users to specify the open boundary

Input Ours Cut view Zoom in

Fig. 16: Study on hole size: With ϵopenness = 0.5, from left to
right, as the hole size in the ”Bunny” model increases from small
to large, more faces are progressively identified as open, leading to
their filling by our method, ultimately forming a thin shell. The
front side is orange, while the back side is white.

to be preserved during the repair (Fig. 15). Particularly, our
system first closes the hole and marks all corresponding
faces. After repair, all marked faces are removed to recover
the boundary.

5 CONCLUSION

In this work, we presented three crucial visual measures
to assess visibility, orientation, and openness, and we pro-
posed a novel framework for mesh repair that incorpo-
rates these measures into critical steps such as local open
surface closing, face reorientation, and global graph cut
using a visual-guided objective function. Our method was
evaluated on a set of 500 models randomly selected from
ShapeNet, showcasing its effectiveness and robustness com-
pared to existing techniques.

Limitations. Nevertheless, it is important to acknowl-
edge that our method does possess certain limitations.

Firstly, since our output targets visual-driven applica-
tions, such as rendering-related mesh processing tasks, our
method would entirely discard invisible inner structures,
which may be an issue when preserving these structures is
vital, such as internal seats and engines in cars. Additionally,
assessing the openness of structures exhibiting channel-like
characteristics presents sample efficiency challenges for ray-
casting. For instance, even with a substantial opening at
the base, the ears of the “Bunny” model do not manifest
a shell-like structure Fig. 16. In the future, we would like to
utilize differentiable rendering techniques to fill textures for
newly added faces. It would also be interesting to remesh
our output to improve the mesh quality, e.g., mesh aspect
ratio.

Besides, although our method can robustly convert any
input mesh into a watertight manifold mesh, using default
parameters tends to preserve the input topological features
rather than closing holes and gaps to produce a single closed
surface, as done in PolyMender [12]. , extreme parameters
can be used to ensure hole closure as illustrated in Fig. 17.
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Input Ours (ϵopenness = 0.5, Nb = 10) Ours (ϵopenness = 1, Nb = 0)
Fig. 17: For input such as triangle soup (Left), our method is able to produce thin shells for each face (Middle) and a single closed
manifold (right) by tuning ϵopenness and Nb.

Although the ray casting is not the bottleneck of our
current pipeline, utilizing advanced rendering techniques,
such as an adaptive adjustment for the maximum bounce
number, could improve the sample efficiency. Also, we’d
like to adjust the distance for offsetting open surfaces adap-
tively to avoid potential issues when the open is small and
the model is large.

Finally, our method guarantees topological manifold-
ness and watertightness, and ensures geometrically self-
intersection-free and degenerate-face-free under exact arith-
metic, but geometric guarantees are lost when exporting our
output to standard file format for downstream applications
under finite floating point precision. This problem can be
potentially solved by using TetWild to process our output
mesh or saving and transferring our output using exact
arithmetic data format.
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1 ADDITIONAL RESULTS1

Ablation Study. We scrutinize and analyze the efficacy of2

pivotal components of our method, including visual guid-3

ance, graph cut, and constrained simplification, using the4

“Chair” model. As shown in Table 1, without visual guid-5

ance, all faces are considered visible and are not reoriented.6

This leads to subpar performance in terms of HD, LFD, and7

PSNR due to the presence of misoriented or open faces.8

Without a graph cut, it entails retaining steps prior to the9

graph cut, as the subsequent steps rely on its outcomes.10

Consequently, the outcome lacks watertightness and man-11

ifold properties, resulting in the model being unrepaired.12

Lastly, after simplification, the face counts are reduced from13

169K to 20K.14

TABLE 1: Ablation study on each component of our method

Watertight Manifold Face # HD LFD PSNR
Input Yes No 27K – – –
No Visual guidance Yes Yes 17K 0.12 7956 27.3
No graph cut No No 13K 0 0 56.7
No simplification Yes Yes 169K 0.01 6 51.4
Ours Yes Yes 20K 0.01 6 51.4

“Skyscraper” ( Fig. 2) shows VM, TW, and fTW have15

difficulty handling the model with inner structures, which16

misdirect the cell classification when using graph cut or17

winding numbers.18

Offset Distance doffset. The offset distance doffset controls19

the thickness of the thin shells created for open faces. We il-20

lustrate the impact of the offset distance doffset using a flower21

model with different doffset. Fig. 1 demonstrates our method22

can robustly convert the input model with hundreds of open23

faces to a watertight mesh, where the Hausdorff distance24

between output and input meshes is controlled by doffset.25

We use doffset = D/20000 as default. On average, the26

introduction of intersected faces by offset faces amounts27

to approximately 280 pairs across the 1400 testing models28

(with an average of 33,829 faces). In the majority of cases,29

due to the presence of intersecting open faces in the original30

model, our offset faces will inevitably intersect with these31

existing intersections.32

• This work was done when Z. Zheng was an intern at LightSpeed Studios.
• Z. Zheng, P. Wang, and G. Wang are with Peking University.
• X. Gao, Z. Pan, W. Li, and K. Wu are with LightSpeed Studios.
• Corresponding Authors: Kui Wu, E-mail: kwwu@global.tencent.com,

Guoping Wang, E-mail: wgp@pku.edu.cn
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Openness and Holes Filling. Our method utilizes 33

the concept of an “openness measure” to maintain thin 34

shell structures. When the threshold is increased, or the 35

holes are made smaller, our method prioritizes hole filling. 36

Conversely, when the threshold is decreased, or the holes 37

are enlarged, our method leans toward creating thin shells. 38

Due to the stochastic nature of ray tracing, our method can 39

be sensitive in visual measure computation. Hence, we 40

conducted a study to investigate the impact of the open- 41

ing ratio of a sphere and openness threshold by opening 42

portions of the sphere with various ϵopenness in Fig. 3, where 43

we use doffset = D/200 to make the volumetric shell more 44

pronounced. With ϵopenness = 1.0, all faces are identified as 45

not open no matter how many rays can be shot from faces to 46

outside, and all small holes are closed to form a sphere with 47

a single layer. When ϵopenness = 0.5, a smaller opening ratio 48

leads to the closure of the hole, as there are insufficient rays 49

shot from the interior to identify any face as an open surface. 50

As the opening ratio increases, more faces are progressively 51

Input Ours with doffset = D/20000
– HD = 6.9e− 3,LFD = 86

Ours with doffset = D/2000 Ours with doffset = D/200

HD = 6.8e− 3,LFD = 86 HD = 7.1e− 3,LFD = 520

Fig. 1: Study on doffset: Given an input plant model containing
numerous open faces, our method can reliably convert it into
watertight manifold meshes, enabling control over Hausdorff
distance (HD) and light field distance (LFD) by adjusting doffset.
D refers to the diagonal length of the model’s bounding box. The
front side is orange, while the back side is white.

0000–0000/00$00.00 © 2021 IEEE
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Skyscraper PM (19K,0.02,684,23.5) TW (249K,0.02,360,28.4) fTW (187K,0.02,730,28.8) AW (23K,0.02,56,31.6) MP (431K,0.02,34,30.4)

T14+VM (1364K,0.02,374,28.8) VR (304K,0.02,0,30.5) VM (1734K,0.01,154,32.5) VR+VM (1936K,0.01,250,31.0) Ours (634K,0.02,0,36.1)

Fig. 2: Skyscraper: We choose “Skyscraper” to demonstrate the issues of existing methods and our superiority over them. (•, •, •, •)
indicates face number, Hausdorff distance, LFD, and PSNR.

ϵopeness = 0.0 ϵopeness = 0.5 ϵopeness = 1.0︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Input Evaluation Ours Cut view Evaluation Ours Cut view Evaluation Ours Cut view

2%

10%

40%

Fig. 3: Study on opening ratio and ϵopenness: From top to bottom, we removed different portions of a sphere as input (left) to make
the opening ratio of the sphere as 2%, 10%, and 40%, respectively. Then, we set the openness threshold ϵopenness as 0.0, 0.5, and 1.0,
respectively, from left to right. Faces that are identified as open faces are highlighted in green, and non-open faces are highlighted in
red. The front side of the face is orange, while the back side is white.

identified as open, leading to their offsetting by our method,52

ultimately forming a volumetric shell. When ϵopenness = 0.0,53

most faces are categorized as open, and our method leans54

toward thin shell formation. In short, our method allows55

switch preference from filling holes to forming volumetric56

shells based on different openness thresholds.57

Statistical Analysis on ShapeNet. Table 2 demonstrates58

our method is significantly effective across a diverse range59

of shapes. Individual details are provided for the eight60

most frequent categories, while all other categories are61

collectively summarized as “others”. Notably, for the “car” 62

category, which has large holes and intricate inner struc- 63

tures, our method excels in hole filling and removing inner 64

invisible parts, creating an outer shell. This can lead to larger 65

Hausdorff Distance (HD) and lower Peak Signal-to-Noise 66

Ratio (PSNR). Overall, our method showcases prowess in 67

handling complex shapes effectively over previous methods 68

in all categories. 69

Disconnected Components. For the example containing 70

disconnected components, our method merges the inter- 71
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TABLE 2: The statistical analysis of 1000 models in ShapeNet, categorized into various classes.

Samples InputFace Face HD LFD PSNR Mem. Time(s)
airplane 86 51K 32K 0.02 1.5e0 61.3 (58.3∗) 955 MB 23.4
car 143 65K 94K 0.06 6e-1 50.1 (40.4∗) 1574 MB 47.9
chair 135 19K 20K 0.01 8e-1 61.6 (61.6∗) 604 MB 10.8
lamp 39 16K 13K 0.01 2.4e0 61.6 (60.7∗) 418 MB 5.7
rifle 54 26K 14K 0.02 1.1e0 65.5 (66.9∗) 425 MB 7.9
sofa 60 17K 10K 0.02 6.7e-2 65.3 (65.3∗) 333 MB 4.8
table 136 11K 6K 0.01 3.1e-1 62.3 (66.7∗) 266 MB 3.1
watercraft 38 55K 34K 0.02 5.3e0 56.9 (55.2∗) 854 MB 20.5
others 309 28K 20K 0.02 9.2e-1 60.1 (60.3∗) 665 MB 15.3

sected components through inner removal while preserving72

all other disconnected components, as shown in Fig. 4.73

Input Ours

Fig. 4: Example of processing disconnected components:
Given the input mesh with disconnected components, our method
merges intersected components while preserving other compo-
nents.

2 APPLICATIONS74

We present four downstream applications of our method,75

mesh simplifications (Fig. 5), Boolean operations on meshes76

(Fig. 6), geodesic distance computation (Fig. 7), and fluid77

simulation (Fig. 8). It is evident that meshes repaired by78

our method facilitate these applications, while the input79

meshes cannot be used due to their geometric and topo-80

logical errors. On the other hand, combining the latest mesh81

repairing techniques, VR+VM results in the loss of original82

geometric structures, rendering the simulation results use-83

less (see Fig. 8).84

In
pu

t

2786 1000 500 250

O
ur

s

2020 1000 500 250

Fig. 5: Example application of mesh simplification: The
input airplane model is shown without (top) and with (bottom)
using our mesh repair before making quadratic error metric
(QEM) simplification [1]. The model repaired by our method can
better preserve its original shape after simplification.

2.1 Proof of Watertight Manifold85

Theorem 2.1. The number of adjacent triangles of any edge in
the extracted mesh Minterface is even:

∀ei ∈ Einterface |Adj(ei)| ≡ 0 (mod 2) (1)

86

Proof. Given an edge ei ∈ Epartition, the adjacent cells form87

a loop, effectively segmenting the 3D domain into N cells88

M0 M1 M0 not M1 M0 M1 M0 not M1

Input Ours

Fig. 6: Example application of boolean operation: After
applying the boolean operation [2] directly to the input meshes,
the resulting mesh is broken due to wrong orientation at M1’s
bottom and tiny gaps, which may not be visible in the image.
However, our method can successfully repair the mesh, enabling
the boolean operation to output the correct result.

Input Ours

Fig. 7: Example application of geodesic distance computa-
tion: Computing geodesic distances on the input mesh through
the Heat method [3] resulted in incorrect results due to disconnec-
tivity and inner structure. However, our method produced a more
desired distance map.

surrounding the edge, where N = |Adj(ei)|. If |Adj(ei)| ≡ 1 89

(mod 2) , each face in Adj(ei) that’s adjacent to the edge 90

(ei) separates the 3D domain into an odd number of cells. 91

It is important to note that face f i
interface is extracted in 92

Mpartition if and only if its two adjacent cells are labeled in- 93

ternal and external, respectively. This condition contradicts 94

the assumption of an odd number of cells forming a loop, 95

where any neighboring cells are designated as one internal 96

and one external. 97

Therefore, ∀ei ∈ Einterface |Adj(ei)| ≡ 0 (mod 2). 98

99

Theorem 2.2. If the number of adjacent triangles of any edge 100

e ∈ E in M is even, after any edge collapse operation, the number 101

of adjacent triangles of any edge ê ∈ Ê in the output mesh M̂ is 102
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VisualRepair + VolumeMesher Ours

Fig. 8: Example application of flow simulation: The airplane
mesh repaired using VisualRepair + VolumeMesher results in
a closed engine model that does not allow airflow passage. In
contrast, our method preserves the original structure of the engine
and allows for the correct flow of fluid through the model.

also even.103

Proof. The edge collapse process for any edge in origin104

mesh ei = (vi0, vi1) could be viewed as firstly move vi1 to105

vi0, then remove all triangles whose corners has two vi0.106

The edges in collapsed mesh M̂ could be split into two107

categories: those that do not share the vertex vi0 and those108

that do.109

For edges in collapsed mesh M̂ that do not share the110

vertex vi0: ∀êa ∈ A = {ê = (vx, vy)|ê ∈ Ê , vx, vy ̸= vi0},111

their adjacent faces are not changed during the collapse.112

This means, for each êa ∈ Ê , we have |Âdj(êa)| ≡ 0 (mod 2)113

as given in precondition.114

For edges in collapsed mesh M̂ that share the vertex115

vi0: ∀êb ∈ B = {ê = (vi0, vy)|ê ∈ Ê , vy ̸= vi0}, the set of116

adjacent faces in collapsed mesh M̂ of edge êb is the union117

of the set of faces in origin mesh adjacent to edge (vi0, vy) or118

(vi1, vy) and remove whose faces with edge (vi0, vi1), thus119

Âdj(êb) = Adj((vi0, vy)) ∪ Adj((vi1, vy)) − {(vi0, vi1, vy)},120

now that the faces to be removed are shared in both121

sets: {(vi0, vi1, vy)} ⊂ Adj((vi0, vy)), {(vi0, vi1, vy)} ⊂122

Adj((vi1, vy)).123

We have |Âdj(êb)| = |Adj((vi0, vy))|+ |Adj((vi1, vy))|−124

2|{(vi0, vi1, vy)}| ≡ 0 (mod 2)125

Notice that vi1 has been removed from M̂ , we have126

Ê = A ∪ B. As a result, the number of adjacent triangles of127

any edge ê ∈ Ê in M̂ is also even.128

129

Theorem 2.3. Given the input mesh, in which the number of130

adjacent triangles of any edge is even, we could create a watertight131

manifold output mesh by repeatedly splitting the edge.132

Proof. If the input mesh has non-manifold edges, se-133

lect one of them named (va, vb) and a pair of adjacent134

faces (va, vb, v1), (va, vb, v2). Then, we replace these two135

faces with (v1, va, vnew), (v1, vnew, vb), (v2, va, vnew), and136

(v2, vnew, vb), where vnew is on the midpoint of (va, vb) as137

shown in Fig. 9. Notice that the number of adjacent faces138

of newly added edges (va, vnew), (vb, vnew), (v1, vnew), and139

Fig. 9: Split a non-manifold edge by adding a new vertex for a
pair of faces.

(v2, vnew) is exactly 2. The number of adjacent faces of edge 140

(va, vb) is reduced by 2. 141

As a result, in the newly created mesh, the number 142

of adjacent triangles of any edge is even; thus, we can re- 143

peatedly split the edge until there are only manifold edges. 144

Given that the number of adjacent triangles of any edge is 145

even, the output mesh is also watertight; otherwise, there 146

would be an edge with only one adjacent face, which leads 147

to a contradiction. Hence, we could split all non-manifold 148

vertices to produce a watertight manifold output mesh. 149

Theorem 2.4. The output mesh of our method is a watertight 150

manifold. 151

Proof. According to Theorem 2.1, the number of adjacent 152

triangles for any edge in the extracted mesh Minterface is even, 153

meeting the precondition of Theorem 2.2. Consequently, 154

the triangulation, preserving boundaries, ensures that the 155

simplified mesh also satisfies the precondition of Theo- 156

rem 2.3—that the number of adjacent triangles for any edge 157

in the mesh is even. Hence, by Theorem 2.3, the output 158

mesh is guaranteed to be watertight and manifold. 159
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