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Figure 1: Examples of rendering fiber-level cloth at real-time frame rates: A sweater model that consists of 356K yarn curve control points
and over 20M fiber curves, rendered using different yarn types with different fiber-level geometry. Notice the difference in appearance.

Abstract

Modeling cloth with fiber-level geometry can produce highly real-
istic details. However, rendering fiber-level cloth models not only
has a high memory cost but it also has a high computation cost
even for offline rendering applications. In this paper we present a
real-time fiber-level cloth rendering method for current GPUs. Our
method procedurally generates fiber-level geometric details on-the-
fly using yarn-level control points for minimizing the data transfer
to the GPU. We also reduce the rasterization operations by collec-
tively representing the fibers near the center of each ply that form
the yarn structure. Moreover, we employ a level-of-detail strategy
to minimize or completely eliminate the generation of fiber-level
geometry that would have little or no impact on the final rendered
image. Furthermore, we introduce a simple yarn-level ambient oc-
clusion approximation and self-shadow computation method that
allows lighting with self-shadows using relatively low-resolution
shadow maps. We demonstrate the effectiveness of our approach
by comparing our simplified fiber geometry to procedurally gener-
ated references and display knitwear containing more than a hun-
dred million individual fiber curves at real-time frame rates with
shadows and ambient occlusion.
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1 Introduction

In computer graphics cloth is typically represented as an infinitely
thin (polygonal) surface. However, cloth is actually made up of a
multitude of yarn pieces interlocked together, often knitted or wo-
ven. Yarn itself is also made up of a few plies, each of which can
contain hundreds of fibers. Recently, researchers have shown that
this yarn-level structure of cloth is important for simulation of cloth
motion and deformation as well as realistic cloth rendering [Kaldor
et al. 2008; Kaldor et al. 2010; Yuksel et al. 2012; Cirio et al. 2014;
Cirio et al. 2015; Cirio et al. 2016; Zhao et al. 2016b]. Nonetheless,
yarn-level representation of cloth not only consumes a considerable
amount of memory for storage but it also involves handling a vast
amount of geometry data for rendering, which makes it consider-
ably expensive even for offline applications.

In this paper we present a real-time cloth rendering method with
fiber-level details. Utilizing a procedural yarn model, our method
is capable of rasterizing full garment models containing more than
a hundred million individual fiber curves at real-time frame rates on
current GPUs. We achieve this by generating simplified fiber-level
geometry on the GPU using yarn-level control points and we pro-
vide an extra performance boost via a level-of-detail approach. We
also introduce a yarn-level self-shadow computation method and a
simple ambient occlusion approximation for high-quality lighting
with limited resources.

We compare our simplified fiber-level models with reference mod-
els generated by a recent procedural yarn model [Zhao et al. 2016b]
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Figure 2: Yarn structure: Yarn typically consists of multiple plies,
each of which is made up of tens to hundreds of micron-diameter
fibers, depending on the yarn type.

using parameters acquired via fitting CT-scan data. Our compar-
isons show that we can qualitatively reproduce the fiber-level ge-
ometric appearance of yarn. We also provide examples of full
garment models rendered using our method (Figure 1). Since our
method does not rely on any precomputation of the yarn-level con-
trol points, it is suitable for yarn-level cloth animation. Further-
more, our approach allows interactively changing the parameters of
the procedural yarn model, thereby providing a new visualization
mechanism for yarn-level cloth modeling and appearance editing.

While our method can support physically-based shading models,
we use a simple shading model in our tests. Computing multiple
scattering of light or global illumination is beyond the scope of this
paper. Therefore, the methods we describe in this paper cover only
a portion of a full cloth appearance modeling process with fiber-
level details. This paper describes methods for efficiently handling
the vast amount of geometric data of fiber-level cloth models with
self-shadows and ambient occlusion at real-time frame rates on cur-
rent GPUs.

2 Background

Fabric appearance has been an active research area in computer
graphics. The geometric complexity combined with the optical
complexity of light interaction make fabric appearance difficult
to predict. Fabrics are constructed by interlocking multiple yarns
pieces and they are often generated using knitting or weaving. A
yarn itself also has a complex structure shown in Figure 2, formed
by twisting a few sub-strands that are called plies. Each ply has a
similar construction, formed by twisting tens to hundreds of indi-
vidual fibers. The variations and imperfections in fiber geometry
impact the overall appearance of the fabric.

2.1 Related Work

Most work on fabric appearance treat cloth as thin sheets with
textures and use a specialized Bidirectional Reflectance Distribu-
tion Function (BRDF). Far-field BRDF models were introduced
for approximating fabric appearance without an explicit yarn-level
model [Ashikmin et al. 2000; Wang et al. 2008; Sadeghi et al.
2013]. For woven fabrics procedural patterns [Adabala et al. 2003;
Kang 2010] were used for approximating fabric appearance with
limited yarn-level detail, and the far-field appearance was improved
using mip-maps [Yuen et al. 2012]. Fitting measured data to a
detailed procedural model was used for capturing the anisotropic
specular reflections for woven fabric [Irawan and Marschner 2012].
Recently, Schröder et al. [2015] proposed a pipeline for estimating
the structure of a woven fabric from a single image. While most of
these methods can produce realistic fabric appearance from a dis-
tance and some of them can even be used for real-time rendering
[Adabala et al. 2003; Kang 2010; Yuen et al. 2012; Velinov and
Hullin 2016], they can only handle woven cloth and cannot repro-
duce fiber-level details.

The importance of using a yarn-level representation for cloth was
demonstrated in recent work on modeling [Yuksel et al. 2012] and

simulation of knitted [Kaldor et al. 2008; Kaldor et al. 2010; Cirio
et al. 2015] and woven [Cirio et al. 2014] cloth. Rendering such
yarn-level models, however, has been a challenge. Though it is
possible to explicitly render each fiber forming the yarn struc-
ture, the geometric complexity of this approach lead to volumet-
ric approximations that convert the entire cloth model into volume
data [Groller et al. 1995; Xu et al. 2001]. The volume data is gen-
erated by sweeping an image representing a cross-sectional distri-
bution of yarn fibers along each yarn curve. Obviously, this cre-
ates a vast amount of volume data to be rendered. Lopez-Moreno
et al. [2015] employed a similar approach for generating sparse
volume data on the GPU, which allows rendering relatively small
models interactively, but with limited fiber-level detail. Jakob et
al. [2010] proposed a framework for volumetric modeling and ren-
dering of materials with anisotropic micro-structure. Micro CT
imaging was used for repeated fabric patterns for volumetric fabric
modeling [Zhao et al. 2011] and explicitly modeling the interaction
of light with micro-geometry [Khungurn et al. 2015]. For reducing
the extensive storage requirements of volumetric fabric rendering,
Zhao et al. [2016a] used the SGGX microflake distribution [Heitz
et al. 2015] to represent volumetric yarn data and approximate the
distant appearance by a down-sampling approach. Even though
these methods can provide a remarkable level of realism, they are
highly expensive in both storage and computation.

2.2 Procedural Yarn Model

Recently, Zhao et al. [2016b] described a procedural representation
of fiber geometry forming the yarn structure, and provided the pa-
rameters of their method for real world yarn samples captured using
micro CT imaging. The procedural fiber generation method we de-
scribe in this paper is based on this work, though we use a slightly
different notation. The fiber geometry is defined in the ply-space,
where the ply is aligned with the z-axis. The center of the ith fiber
ci is defined parametrically using

ci(θ) = [R cos(θi + θ), R sin(θi + θ), α θ/2π ]T , (1)

where θ is the polar angle that parameterizes the fiber helix, θi is
initial polar angle for the fiber,R is the distance from the ply center,
and α is a constant determining the twist of the fiber. The centers
of plies cply twisting around the yarn are represented similarly in
yarn-space, where the yarn is aligned with the z-axis.

Fibers can be classified into three types: migration, loop, and hair.
Migration fibers are the most common fibers that twist around the
ply regularly. Their distances to the ply center R, however, change
continuously between two parameters Rmin and Rmax using

R(θ) =
Ri

2
(Rmax +Rmin + (Rmax −Rmin) cos(θi + sθ)) , (2)

where Ri is the distance of the ith fiber to the ply center line, and s
is a parameter that controls the length of the rotation. Loop fibers
do not strictly follow this regular structure. They represent fibers
that have been (accidentally) pulled out during the manufacturing
process. They are handled by simply replacing Rmax in Equation 2
with a larger value Rloop

max . Finally, hair fibers are fibers that have
open endpoints sticking outside of the their plies. They significantly
contribute to the fuzzy appearance of yarn.

3 Yarn Rendering with Fiber-level Detail

In our real-time fiber-level cloth rendering method we explicitly
render fiber curves, as opposed to using a volumetric representa-
tion. Since a full garment model can easily have more than a hun-
dred million fiber curves, we employ a number of simplifications to
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Figure 3: Placing fibers around the yarn: The computation of
fiber positions takes place on the cross-section plane perpendicular
to the yarn curve.

minimize the data stored and sent to the GPU, fiber segments ac-
tually drawn on the screen, and lighting computations needed for
self-shadows and ambient occlusion.

3.1 Fiber Generation

We use a procedural fiber generation method based on the model
of Zhao et al. [2016b]. For minimizing the data storage and the
data transfer to the GPU, we generate the fiber curves on the GPU
using control points that define the center of the yarn curves and a
small number of parameters used by the procedural model. Thus,
the cloth model we render is composed of a number of curves (cu-
bic Bézier or Catmull-Rom), each of which is represented by four
control points. For generating the individual fiber curves from the
yarn curve we must compute the displacements from the yarn to
each ply and then from each ply to its fibers.

We compute the displacement vector ∆cply
j from the yarn center

cyarn to the center of the j th ply cply
j at any given point along the

curve (determined by θ) on the cross-section plane perpendicular to
the yarn curve, as shown in Figure 3. Let T̂yarn be the unit tangent
vector at a point along the yarn curve and N̂yarn be a perpendic-
ular unit normal vector defining the orientation of the yarn. The
displacement is calculated using

∆cply
j (θ) = cply

j − cyarn

=
1

2
Rply

(
cos(θply

j + θ) N̂yarn + sin(θply
j + θ) B̂yarn

)
,

whereRply is the radius parameter of the ply, B̂yarn = T̂yarn × N̂yarn

is a perpendicular direction (forming an orthonormal basis with
T̂yarn and N̂yarn), and θply

j = 2πj/nply is the initial polar angle of
the j th ply, and nply is the number of plies.

We compute the displacement vector ∆ci from the ply center cply
j

to center of the ith fiber ci similarly. However, unlike yarn, the
cross-section of a ply is not a circle, but it is elongated in the per-
pendicular direction to its displacement ∆cply

j forming an ellipse.
Let T̂ply

j be the unit tangent vector of the ply curve computed using
the derivative ∂cply

j /∂θ. The displacement vector is given by

∆ci(θ) = ci − cply
j

= R
(

cos(θi + θ) N̂ply
j eN + sin(θi + θ) B̂ply

j eB
)

, (3)

where N̂ply
j = ∆cply

j /||∆cply
j ||, B̂

ply
j = T̂yarn × N̂ply

j , and eN and
eB are the scaling factors for the ellipse.
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Figure 4: Fiber types: Black curves are migration fibers with R
values changing between Rmin and Rmax. The green curve is a loop
fiber and the red curves are hair fibers.

Finally, ci = cyarn + ∆cply
j + ∆ci is computed using the two dis-

placements and the yarn center. This way, given the control points
of the yarn curve, we can compute any point on any fiber curve.

In this model, the radius of a fiber R changes periodically (using
Equation 2) along the z-axis of the ply with a period of α (see Equa-
tion 1). We consider each full period of R separately and assign a
fiber type. Figure 4 shows an example that includes four periods
and their fiber types. The migration fibers simply follow Equation 2
and loop fibers merely use a different maximum radius Rloop

max with
the same equation, similar to the method of Zhao et al. [2016b].
These two fiber types span their entire periods. The hair fibers,
however, are handled differently in our method for minimizing the
number of fibers we generate. Instead of generating separate hair
fibers, we effectively break parts of migration fibers and convert
them into hair fibers. If a period is chosen to be a hair fiber, only
a portion of the period is used for generating the hair fiber and the
remaining portion is used as a migration fiber. Our hair fibers either
start from a random radius Rhair

max and linearly decrease to Rmin or
they extend in the opposite direction. We also use a different twist
parameter αhair for hair fibers, so that their rotations of a hair fiber
around the ply is distinctly different from other fiber types. The
similarities in the way that these three fiber types are handled al-
low generating these fibers on the GPU with minimal conditional
branching in execution.

3.2 Core Fibers

While we can generate each individual fiber by computing its dis-
placement from the yarn curve as explained above, considering that
a ply can have hundreds of fibers, this can quickly lead to a large
number of fiber curves to be rasterized. Reducing the number of
fibers generated per yarn would not only reduce the geometry count,
but it can also minimize the number of draw calls, since the current
tessellation shaders can generate up to 64 curves (isolines) from a
single curve. Fortunately, a portion of these fibers that are closer to
the ply center are often occluded by other fibers closer to the surface
of the ply. However, since these fibers near the center of the ply
are not completely invisible, eliminating them altogether changes
the appearance of the ply. Instead, we can use a lower-resolution
representation for these fibers. We achieve this by collectively rep-
resenting all fibers near the center of the ply using a single thick
fiber that we call the core fiber. Thus, in our method each ply has
a single core fiber that represents all fibers near the ply center. The
number of fibers a core fiber represents depends on the parameters
of the procedural model and it can consist of a significant portion
of the fibers forming the ply.

The thickness of a core fiber is determined by the maximum dis-
tance of all fibers it represents to the ply center (i.e. the distance of
the farthest fiber). Therefore, depending on the parameters of the



Figure 5: The height channel of an example core fiber texture.

procedural model, a core fiber can be considerably thicker than reg-
ular fibers. To make the core fiber appear like a collection of fibers,
we use a precomputed texture on the core fiber. This texture is gen-
erated by rendering all fibers that correspond to the core fiber going
through one full twist, as shown in Figure 5, and it is updated only
when the parameters of the procedural model are modified. Storing
a height-map, 2D surface normal, and an alpha channel in this tex-
ture we can reproduce the appearance of all fibers represented by
the core fiber. However, these fibers only represent migration fibers
and we use s = 1 for them, so that their radius period is the same
as one full twist around the ply, thus the texture for one full twist
tiles seamlessly. The loop and hair fibers are represented by other
fibers that are explicitly generated.

When using this texture, the v (vertical) coordinate of this texture
corresponds to the position along the thickness of the core fiber.
The u (horizontal) coordinate, however, depends on both ply and
fiber rotations, as well as the view direction, such that

u =
1

2π

(
θ (αply)2 α

αply − α +
ψview

2

)
, (4)

where ψview is the angle between the view direction and N̂yarn.

3.3 Level-of-detail

Since we are generating the fibers on the GPU, we can employ a
level-of-detail (LoD) strategy to minimize the number of fibers to
be generated when the cloth model is viewed from afar. We use the
width of a fiber in screen space to determine the number of fibers
and subdivisions along the curve segments.

As the view point moves away from cloth and the width of a fiber
gets smaller in screen space, its contribution to the final image gets
smaller as well. In fact, as the fiber gets thin, its probability of inter-
secting with any of the shading sample points decreases. Thus, the
expected visual contribution of a fiber is proportional to its screen-
space area.

Therefore, in our method we adjust the number of fibers generated
for a ply based on the screen-space width of a fiber ωfiber placed
at the center of the yarn curve. If the fiber width is smaller than
a user-defined threshold ωLoD (typically smaller than a pixel), we
simply generate fewer fibers. To maintain a similar overall appear-
ance for the plies, we in turn increase the width of the core fiber to
compensate. We reach the maximum LoD level when the width of
a ply ωply placed at the yarn center is smaller than the same thresh-
old ωLoD, in which case only core fibers are generated for the plies.
Note that ωply/ωfiber is a constant determined by the parameters of
the procedural yarn model. We compute our LoD scale factor λ2

once for each yarn curve segment using

λ =


1, if ωLoD ≤ ωfiber

0, if ωply ≤ ωLoD

ωfiber

ωLoD

(
ωply−ωLoD

ωply−ωfiber

)
, otherwise,

(5)

where nfiber
max is the maximum number of fibers to be generated. The

thickness of the core fiber is scaled between its original thickness
and the thickness of the ply using the same scaling factor λ2. This
scaling factor λ2 is also used for adjusting the number of subdivi-
sions along each fiber curve.

Figure 6: Precomputed self-shadows: (Top row) density slices for
different orientations of yarn and (bottom row) their corresponding
shadow densities with light coming from the left sides of the images.

We can also check if a yarn piece is in the view frustum using the
control points of the yarn curve. If we detect that the yarn piece
is outside of the view frustum, we simply discard the yarn piece
without generating any fibers.

3.4 Self-Shadows

Self-shadows are extremely important for realistic fabric appear-
ance. On the other hand, it is expensive to compute the fiber-level
shadows of a yarn model. In particular, using shadow maps for in-
dividual fiber shadows would require an extremely high-resolution
shadow map, since individual fibers are typically orders of magni-
tude thinner than the size of the cloth model. Therefore, we sep-
arate the fiber-level self-shadows within the yarn and the shadows
between yarn pieces. The former is approximated using a precom-
puted self-shadow texture and the latter is handled via shadow map-
ping.

To simplify the self-shadow precomputation and substantially re-
duce its dimensionality, we do not consider individual plies for the
self-shadow computation. Instead, we rely on the density function
that we use for placing the fibers around a ply (the same density
function as Zhao et al. [2016b]). Since the density function is cir-
cularly symmetric, we do not need to consider the twist of fibers
around the ply center. We must, however, consider the twist of plies
around the yarn direction, since the cumulative density function for
the yarn is not circularly symmetric.

For further simplification we precompute self-shadows on the 2D
cross-section plane of the yarn. Thus, for the purposes of self-
shadow computation, the light direction is assumed to be perpendic-
ular to the yarn direction. This allows parameterizing self-shadows
using the relative orientation of the perpendicular light direction
and the yarn twist.

Our precomputed self-shadow texture contains multiple slices of
2D self-shadow textures, each of which correspond to a different
relative angle between the light direction and the yarn twist. In our
implementation the light direction for all slices is aligned with the
texture-space u-coordinate and each slice uses a different rotation
of the yarn cross-section, as shown in Figure 6. Using the rotational
symmetry of the yarn density, we only need to sample relative an-
gles in the range [0, 2π/nply]. The shadow computation begins with
computing the cumulative density function for each slice (Figure 6
top row). Then, for each pixel of each slice, we accumulate the total
density on the left side of the pixel (in the opposite direction to the
light direction). This value determines the total expected fiber den-
sity the light would have to go through to reach the pixel position.

We store the entire collection of these slices in a 3D texture, so
that we can use trilinear filtering to lookup the total expected fiber
density that light must go through to reach any point on the yarn
cross-section for a given relative orientation of the yarn twist and
the light direction. This total density value can be used with an



Figure 7: An example of distance-based ambient occlusion.

exponential decay function to estimate the light reaching any point
within the yarn volume during shading.

While computing the shadow map for handling the shadows be-
tween yarn pieces, we simply render each yarn curve as a thick tube,
completely disregarding the fiber-level structure of yarn. Nonethe-
less, since the shadow map is not used for computing the self-
shadows within the yarn, this provides an acceptable and computa-
tionally efficient approximation of yarn geometry for shadow map
generation.

3.5 Ambient Occlusion

The subtle impact of ambient occlusion can substantially improve
the image quality, but it can also have a considerable computation
cost. We opted to use a very simple ambient occlusion approxima-
tion that merely uses the distance to the yarn center to linearly scale
the ambient light.

Even though this simple distance-based ambient occlusion approx-
imation does not correspond to a traditional ambient occlusion for-
mulation, it can provide the necessary visual queues for visualiz-
ing yarn with fiber-level detail. An example is shown in Figure 7.
Notice that our distance-based ambient occlusion approximation is
effective in accentuating the spaces between plies as well as indi-
vidual fibers, providing an acceptable approximation for ambient
occlusion.

4 Implementation Details

The input for our system are the parameters of the procedural yarn
model and a set of curve control points for the yarn center. The
fiber-level geometry is generated on the GPU using tessellation
shaders, which also handle LoD and discard curve segments out-
side of the view frustum. Each fiber is generated as a collection of
line segments (i.e. isolines), which are converted to camera-facing
strips in the geometry shader.

We use a 1D texture for storing the fiber coordinates Ri and θi,
accessed using fiber index i. These coordinates are ordered based
on their distances to the ply center Ri, so that when LoD is used
for reducing the number of fibers generated during rendering, the
fibers that are skipped first are the ones closer to the ply center.

One important limitation of current GPUs for fiber-level cloth ren-
dering with our method is that the tessellation shaders can only gen-
erate up to 64 isolines. This means that when using a typical yarn
model that contains 3 plies, we can only have up to 21 fibers per
ply, which is highly limited for yarn types that contain hundreds of
fibers in each ply. Yet, this limitation is remedied by our core fibers,
each of which can represent all fibers near the center of a ply using
only a single isoline. This way, we can devote the remaining 20 iso-
lines per ply to loop and hair fibers, as well as migration fibers near
the surface of the ply for providing high-quality geometric detail.

Because we must generate different types of fibers (core, migra-
tion, loop, and hair) within the same tessellation shader, branching
is unavoidable. Yet, the similarities between the fiber types help
minimize branching in the tessellation shader. Moreover, we can
completely eliminate the need for branching in the geometry and
fragment shaders for handling different fiber types. Since the ge-
ometry shader merely converts lines to strips, sending it the fiber

core fibers

regular fibers

regular & core fibers

reference

Figure 8: An example yarn model with our core fibers and regular
fibers, and the comparison of our full model to a reference model
generated using the method of Zhao et al. [2016b].

ours

reference

ours

reference

ours

reference
Figure 9: Comparison of our fiber generation method to reference
models generated using the method of Zhao et al. [2016b].

thickness alone makes it indifferent to the fiber type. The fragment
shader, on the other hand, must use a texture on the core fibers to
account for the missing geometric detail. To unify the fragment
shader operations for all fiber types, we use a different part of the
same texture for regular (migration, loop, and hair) fibers as well.
The only difference between a regular fiber and a core fiber in the
fragment shader is their texture coordinates, which are computed in
the tessellation shader.

Using a realistic shading model is important for reproducing fabric
appearance. Nonetheless, in our implementation we used a sim-
ple shading model instead that has a diffuse and a single specular
component. The diffuse component is based on the surface normal
of a fiber, obtained from the fiber texture. For the specular com-
ponent fs we use a far-field approximation of surface reflectance
for tubular shapes, similar to the hair shading model of Sadeghi et
al. [2010], computed as fs = ks cos(φ/2) exp(−θ2h/2β2), where
ks is the specular color, φ is the azimuthal angle and θh is the lon-
gitudinal half angle between the light and view directions, and β is
the longitudinal width of the specular lobe.



(a) No Shadow (b) + Shadow Map (c) + Self-shadows (d) + Ambient Occlusion
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Figure 10: Shadow components: A glove model showing the three shadow components: shadow map, self-shadows, and ambient occlusion.

5 Results

We show the components of our fiber model in Figure 8. Notice that
yarn with only core fibers looks too regular, as compared to the ref-
erence [Zhao et al. 2016b]. Our regular fibers (migration, loop, and
hair fibers) provide the necessary irregularity, but the yarn model
generated using only 60 regular fibers looks too sparse. Unfortu-
nately, the tessellation limits of current GPUs prevent generating
more fibers without additional draw calls. Our combined model
including both regular and core fibers, however, can qualitatively
match the appearance of the reference model. Other example com-
parisons using different yarn parameters are included in Figure 9.
Note that our model cannot produce an exact match for the refer-
ence mainly because we handle hair fibers differently.

We display the contributions of different shadow components on
an example glove model in Figure 10. In the case of rendering
without any shadows (Figure 10a), diffuse shading and specular
highlights provide some hint of the fiber-level geometry. The shad-
ows between different yarn pieces introduced by the shadow map
(Figure 10c) accentuate the knitted structure formed by the yarn
curves, but they lack fiber-level details, which are introduced by
the self-shadows (Figure 10b). The ambient occlusion component
(Figure 10d) enhances the fiber-level details and also provides some
hint of the fiber-level geometric details on fully shadowed areas, as
opposed to a constant ambient component.

Figures 1 and 12 show two different sweater models rendered with
different yarn types, generated using different procedural yarn pa-
rameters. In both figures, examples with different yarn types use
the same yarn curve control points as input. The only difference is
the fiber-level geometry generated on the GPU, but it is somewhat
difficult to see the individual fiber details in these examples because
of the distance of the yarn curves to the camera. Nonetheless, even
though examples with different yarn types use the same shading
parameters, the underlying fiber geometry still impacts the overall
appearance.

Figure 11 shows a knitted cable pattern rendered with and with-
out LoD. Since our LoD approach eliminates fibers that are less
likely to intersect with any screen samples, the visual impact of our

Figure 11: Level-of-detail: (Left) disabling LoD generates 63
fibers everywhere, (right) enabling LoD generates varying numbers
of fibers between 3 and 63 based on the fiber thickness in screen
space, displayed with color coding.

LoD is minimal, as long as it is not used aggressively (by setting a
threshold value larger than one pixel size). Even with a high LoD
threshold our core fibers produce high-quality results. However,
since core fibers cannot represent hair fibers, a high LoD threshold
is not advisable for rendering models with a high density of long
hair fibers, such as the model on the right in Figure 1.

Example dress models with different yarn-level structures are
shown in Figure 14. Each of them contains over a hundred mil-
lion fiber curves. However, since our method generates the fibers
on the GPU, we only store about two million yarn curve control
points that define the yarn-level geometry. Furthermore, using our
core fibers and our level-of-detail strategy, we generate and raster-
ize only a fraction of the total number of fiber curves.



Figure 12: Different yarn parameters: A sweater model with 681K yarn curve control points and 1.5G fiber segments using different
procedural yarn parameters, rendered using the same yarn-level control points, the same shading parameters, and the same lighting.

Table 1: Performance Results for Different Camera Distances

# of Control # of Fiber Close Med. Full
Model Points Segments View View View
Glove (Fig.10) 148K 8.3M 9 ms 19 ms 9 ms
Sweater (Fig.1) 356K 20M 11 ms 23 ms 13 ms
Cables (Fig.11) 362K 20M 2 ms 23 ms 24 ms
Sweater (Fig.12) 681K 38M 11 ms 28 ms 15 ms
Dress (Fig.14-left) 1.89M 100M 9 ms 23 ms 20 ms
Dress (Fig.14-right) 1.99M 112M 11 ms 25 ms 21 ms

All performance results are obtained on an NVIDIA GeForce GTX
1080 GPU, rendering to an OpenGL viewport of size 1280× 960.

We provide the performance results with different models in Ta-
ble 1. Note that when the camera is far enough that models are
fully visible, we generate fewer fibers using our level-of-detail strat-
egy and achieve high performance (the “Far” column on the table).
Close-ups achieve high performance as well, since we avoid ren-
dering the yarn curves that are outside of the view frustum (the
“Close” column on the table). Therefore, our worst-case perfor-
mance appears at the medium distance, where the camera is close
enough to the model to trigger the generation of most fiber curves
but not close enough to cull a significant portion of the model. The
“Med.” column in Table 1 shows the worst performance we iden-
tified by manually adjusting the camera distance. We also provide
the performance graphs for all models in the paper in Figure 13.
The fluctuations in this graph are due to different parts of the mod-
els entering the view frustum as the camera moves away. Notice
that our method achieves high performance at extreme close-ups
and the performance begins to improve beyond a certain distance.
The far distances in these graphs (around 1) and Table 1 are the
closest camera distances that contain the entire model in the view
frustum. As hinted by the tail end of these graphs, the performance
continues improving as the camera distance increases.

6 Conclusion

We have presented a real-time fiber-level cloth rendering frame-
work. Our method generates fiber-level geometry on the GPU dur-
ing rendering. We have described a modified procedural fiber gen-
eration method for hair fibers, and we have introduced core fibers
for greatly reducing the number of fibers that are generated on the
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Figure 13: Performance Graphs: The dependence of the frames
per second performance values on camera distance for all exam-
ples in the paper. The camera distances are normalized such that
the models are fully visible and cover the screen at their maximum
distances, shown at the camera distance value of 1.

GPU and allowing current GPUs with limited tessellation capabili-
ties to render fiber-level yarn models using only yarn curve control
points as input. Moreover, we have described a LoD approach for
extra performance boost in distant views and close-ups. Further-
more, we have introduced an efficient self-shadow precomputation
method for yarn and provided a simple ambient occlusion approx-
imation. Our results show that our modified procedural model can
produce qualitatively similar results to a state-of-the-art procedu-
ral fiber generation technique and we can render full size garment
models with fiber-level detail at real-time frame rates.
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Figure 14: Two dress models with about 2M yarn curve control
points and over 100M fiber curves, rendered using the same yarn
type, shading parameters, and lighting conditions. The only differ-
ences are the control points of the yarn curves.
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