
Learning based 2D Irregular Shape Packing

ZESHI YANG, LightSpeed Studios, USA
ZHERONG PAN, LightSpeed Studios, USA
MANYI LI, Shandong University, China
KUI WU, LightSpeed Studios, USA
XIFENG GAO, LightSpeed Studios, USA

XAtlas pr: 69.8% Ours pr: 77.4% XAtlas pr: 66.2% Ours pr: 76.4% XAtlas pr: 61.0% Ours pr: 72.9%

Fig. 1. Three UV-packing results generated using XAtlas and our learning-assisted method.

2D irregular shape packing is a necessary step to arrange UV patches of a
3D model within a texture atlas for memory-efficient appearance rendering
in computer graphics. Being a joint, combinatorial decision-making problem
involving all patch positions and orientations, this problem has well-known
NP-hard complexity. Prior solutions either assume a heuristic packing order
or modify the upstream mesh cut and UV mapping to simplify the problem,
which either limits the packing ratio or incurs robustness or generality issues.
Instead, we introduce a learning-assisted 2D irregular shape packing method
that achieves a high packing quality with minimal requirements from the
input. Our method iteratively selects and groups subsets of UV patches
into near-rectangular super patches, essentially reducing the problem to
bin-packing, based on which a joint optimization is employed to further
improve the packing ratio. In order to efficiently deal with large problem
instances with hundreds of patches, we train deep neural policies to predict
nearly rectangular patch subsets and determine their relative poses, leading
to linear time scaling with the number of patches. We demonstrate the
effectiveness of our method on three datasets for UV packing, where our
method achieves a higher packing ratio over several widely used baselines
with competitive computational speed.

CCS Concepts: • Computing methodologies → Computer graphics;
Machine learning.

Additional KeyWords and Phrases: geometry processing, deep reinforcement
learning, combinatorial optimization

ACM Reference Format:
Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao. 2023. Learning
based 2D Irregular Shape Packing. ACM Trans. Graph. 42, 6 (December 2023),
16 pages. https://doi.org/10.1145/3618348

Authors’ addresses: Zeshi Yang, zs243@mail.ustc.edu.cn, LightSpeed Studios, Seattle,
WA, USA; Zherong Pan, zrpan@global.tencent.com, LightSpeed Studios, Seattle, WA,
USA; Manyi Li, manyili@sdu.edu.cn, Shandong University, Jinan, Shandong, China;
Kui Wu, kwwu@global.tencent.com, LightSpeed Studios, Los Angeles, CA, USA; Xifeng
Gao, xifgao@global.tencent.com, LightSpeed Studios, Seattle, WA, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/12-ART $15.00
https://doi.org/10.1145/3618348

1 INTRODUCTION
2D irregular shape packing lies the theoretical foundation for a wide
spectrum of applications across various industrial areas, e.g. material
parts assembly [Ke et al. 2020], VLSI module placements [Cheng et al.
2005], and 2D shelf arrangements in automatic warehouses [Önüt
et al. 2008]. The most prominent packing application in computer
graphics is UV chart packing, where a set of 2D shapes correspond-
ing to patches of 3D models are packed together into a single texture
atlas for mapping various appearance details onto the 3D surface
for downstream rendering. In the realm of digital games where
many 3D models are rendered in the virtual world, improving the
UV packing ratio could significantly save the graphical memory,
improve the loading speed, and reduce rendering overhead. This
problem was recognized decades ago, e.g., by Soucy et al. [1996]
and Sander et al. [2001], which has recently revived as an active
area of graphic research [Limper et al. 2018; Liu et al. 2019; Zhang
et al. 2020].
An packing algorithm needs to search for both the position and

orientation of each patch. Due to its combinatorial nature, find-
ing optimal 2D shape packing has been well-understood as being
NP-complete and APX-hard. Prior research efforts are focused on
heuristic or genetic algorithms to determine the order of objects
to be packed, and then search for the pose of each shape, e.g., us-
ing no-fit polygon (NFP) and the “Tetris” algorithm. However, the
sub-optimality gap of these heuristics can be substantial. On the
other hand, when the problem size is small, globally optimal stochas-
tic optimization algorithms have been proposed to search for the
near-optimal packing orders. Although these techniques can scale
to tens of 2D shapes, UV unwrapping approaches and commercial
3D modeling software can oftentimes generate hundreds of patches
for one 3D model, which is far beyond the capabilities of the global
search algorithms.
We propose a learning-assisted 2D packing pipeline for general

irregular-shaped patches. The design of our approach is based on
two observations: 1) Prior works generate sub-optimal solutions
by assuming objects are packed sequentially. 2) Prior works try
all possible poses and orientations for each to-be-packed object
to find the best solution, leading to slow computation. To tackle

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

https://doi.org/10.1145/3618348
https://doi.org/10.1145/3618348

2 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

these issues, we propose to hierarchically group patches into nearly
rectangular super-patches, allowing a larger search space for patch
combination and a smaller optimality gap. Instead of exhaustively
trying all possible combinations, we train a high-level group selector
network (HSN) to efficiently predict how likely a candidate patch
subset can be grouped into a rectangular super-patch. Given an
identified patch subset, we use the sequential ordering technique,
similar to prior works. Specifically, we use a low-level sorter network
(LSN) to determine the suitable order of packing within the subset.
Next, a low-level pose network (LPN) infers the rough initial pose
of each patch. The ultimate pose of these patches is determined by
local numerical optimization. These two networks are trained using
reinforcement learning to efficiently infer near optimal sequential
packing policies.
We have evaluated our method on 3 datasets, containing highly

irregular UV patches generated from both organic and man-made
3D models. We show the effectiveness of our approach by compar-
ing against widely used algorithm baselines, including piecewise
linear NFP, XAtlas [Young 2023], and [Sander et al. 2003], where
we achieve a 5% − 10% packing ratio improvement across all the
tested datasets. We further highlight the generality of our learned
policies, by training them on one dataset and evaluating them on
all three datasets. We find our method still outperforming baselines
on unseen datasets, proving that our method does not need to be
retrained for each problem domain. We include the full datasets and
results with statistics in the supplementary material.

2 RELATED WORK
We discuss representative related works on UV-atlas generation,
irregular shape packing, and learning-based packing algorithms.

2.1 UV-atlas Generation
The standard industrial pipeline for generating UV-atlas involves
three stages: cutting, parameterization, and packing. Mesh param-
eterization minimizes various distortion energies as summarized
in [Rabinovich et al. 2017]. To realize strict distortion bounds, Sorkine
et al. [2002] proposed greedy, simultaneous cutting and parame-
terization that compromises between the distortion and cut length.
Similarly, Lévy et al. [2002] proposed greedy mesh cutting to avoid
overlapping. More recent approaches [Poranne et al. 2017] formulate
the cut and parameterization under a joint optimization framework,
leading to more optimal solutions. Under a strict distortion bound,
however, these joint optimization techniques can lead to a large
number of patches being handled by the packer.
To handle the resultant large packing problems, Sander et al.

[2001] used the bounding box approximation for each patch, simpli-
fying the problem to a bin packing. Lévy et al. [2002] proposed to
solve the irregular shape packing by always putting new patches on
top of existing ones, where the exact horizontal position is chosen
to minimize the wasted space between vertical boundaries. Nöll
and Strieker [2011] revised the irregular packing technique [Lévy
et al. 2002] and considered both horizontal and vertical boundaries,
including holes. Although these techniques are less accurate than
exact NFP-based methods [Bennell and Song 2008], their compu-
tational costs are much lower for large problem instances. On the

downside, all these packing algorithms are myopic and assume a
fixed packing order, potentially limiting their solution quality.

Instead of packing UV patches at a separate stage, several works
propose to optimize mesh cuts and patch shapes for higher packing
ratio. Limper et al. [2018] proposed to progressively cut along void
box boundaries to improve packing ratio. Schertler et al. [2018]
generated motorcycle graph for quad-dominant meshes consisting
of rectangular patches, leading to perfect packing ratios. Liu et al.
[2019] generalized the idea of motorcycle graph to arbitrary meshes
by deforming arbitrarily shaped patches to be nearly axis-aligned.
Although these techniques are appealing for a high packing ratio,
they change either the topology or geometry of the input UV patches.
We choose to solve packing by maintaining the original shapes of
UV patches for better conformity with existing pipelines.

2.2 General Irregular Shape Packing
Due to the theoretical hardness [Bansal et al. 2006; Hartmanis 1982]
and practical importance, the irregular packing problem has gar-
nered research attention over the past decades. In the community
of manufacturing design [Attene 2015; Cheng et al. 2005; Önüt et al.
2008; Wang et al. 2022], researchers have developed algorithms to
compute highly efficient packing solutions via a bilevel pipeline,
where the high-level algorithm computes an order of the shapes for
packing and the low-level algorithm determines the affine transfor-
mation for each shape regarding the already packed shapes. Early
research works focus on low-level geometric algorithms that de-
termine all possible collision-free poses for placing a new shape,
resulting in the useful tool of NFP [Bennell and Song 2008] and fast
collision checking [Riff et al. 2009]. The most efficient method for
computing the NFP is through the Minkowski sum [Bennell and
Song 2008], which incurs a complexity of at least O(𝑁 2) with 𝑁
being the number of edges in each polygon. The ultimate pose of
each shape is then chosen from the potential pose set using simple
heuristic rules as summarized in [Guo et al. 2022], where prominent
rules include bottom-left-first, maximal-packing-ratio, and minimal-
boundary-length. Unfortunately, even computing the exact NFP for
hundreds and thousands of UV patches is intractable, and practical
algorithms [Lévy et al. 2002; Nöll and Strieker 2011] only consider
horizontal or vertical boundaries.

Built off of the low-level algorithm, a high-level shape selector fur-
ther optimizes the packing ratio by manipulating the order of pack-
ing. This is a critical step to high-quality packing and researchers
propose a series of global optimization algorithms, including brute
force search [Crainic et al. 2009], genetic algorithm [Ke et al. 2020],
and simulated annealing [Gomes and Oliveira 2006]. However, each
search step of these algorithms involves calling the low-level al-
gorithms, which are intractable for UV packing, so existing UV
packing algorithms such as [Nöll and Strieker 2011] simply sort the
patches in area-descending order.

2.3 Learned Packing Policy
Machine learning bears significant potential in solving combinato-
rial optimization [Bengio et al. 2021]. Several recent works have
applied learning approaches to various packing problems, most of
which [Hu et al. 2020; Jiang et al. 2021; Yang et al. 2023; Zhao et al.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

Learning based 2D Irregular Shape Packing • 3

…

… … HSN

High-level Group Selector

LSN

LPN

LSN

LPN

…

…

…

LSN

LPN

Low-level Packing Policy

First Stage

…

Bin Packing Joint Opt.

Hole Filling

Second Stage

Input Patches

…

Tiny

…

Non-tiny

Fig. 2. The overall pipeline of our learning-assisted packing approach.

2021, 2022] deal with 3D bin packing problems. In particular, Zhao
et al. [2021] and Yang et al. [2023] only deal with online packing
problems where the high-level packing order is fixed. In contrast,
Hu et al. [2020] focuses on learning the physically realizable packing
order. They trained an attention network to locate the next object to
be packed, given their precedence constraints. Similar to our tech-
nique, Jiang et al. [2021] and Zhao et al. [2022] presented a complete
pipeline involving learned high-level object selectors and low-level
pose inference.

Learning irregular packing skills is a muchmore challenging prob-
lem, where the learning model has to recognize the complex object
shapes and handle the continuous decision space of object poses.
Two recent works [Fang et al. 2023; Goyal and Deng 2020] consid-
ered packing of irregular shapes. Goyal and Deng [2020] proposed a
problem set for 3D packing problems and showed that a neural shape
selector trained via reinforcement learning outperforms heuristic
baselines. Fang et al. [2023] also trained a neural shape selector
via reinforcement learning. Both algorithms use heuristic rules for
the low-level pose computation and Fang et al. [2023] even used
NFP-based pose computation. However, only learning the high-level
selector is not enough for UV packing, since low-level pose selection
can still be a major computational bottleneck.

3 OVERVIEW
Our method takes as input a set of UV patches, each represented as
an irregular, planar, manifold triangular mesh in their local frame
of reference. We allow an arbitrary number of holes within each
UV patch. The output of our algorithm is a set of rigid transforma-
tions, one for each patch, such that, after being transformed, the
UV patches are tightly packed into a rectangular texture domain in
the global frame of reference and in a collision-free manner. The
pipeline of our method is illustrated in Fig. 2.
Given the set of UV patches, we filter out the tiny patches and

firstly process the non-tiny ones in two stages. Our first stage aims
to turn the non-tiny patches into nearly rectangular super-patches
(Sec. 4). We maintain the set S of super-patches that is initialized to
be the non-tiny patches. We first employ a sampling-based group
selector network (HSN Sec. 4.3) to identify a potential subset S′ of
at most 𝐻 patches that can form a nearly rectangular super-patch.

To compute the super-patch, we utilize a low-level sorter network
(LSN Sec. 4.2) and a low-level pose network (LPN Sec. 4.1). LSN
re-orders the patches within the subset and sequentially outputs
the next patch to be packed. LPN selects the rough initial pose
for each incoming patch, whose ultimate pose is adjusted using
a local numerical optimization. This procedure is denoted as the
low-level function LL(S′). Once the super-patch is generated, it will
be inserted back into S to replace the subset of patches, essentially
updating S to S − S′ ∪ {LL(S′)}. The above process is repeated
until each (super-)patch in S is nearly rectangular. Our second stage
(Sec. 4.4) assembles all the patches using a heuristic bin-packing
algorithm. A joint local optimization is then performed to squeeze
all the patches as tightly as possible. Finally, the tiny patches filtered
out in the beginning will be put into gaps between non-tiny patches.
In the following, we describe the two stages in detail. We summarize
our network architectures and pseudo-code of our algorithm in our
supplementary material.

4 NEAR RECTANGULAR PATCH GENERATION
Although we use high-level selector networks before low-level poli-
cies, we need to train low-level policies first due to data dependency
and we introduce our method in the order of training.

4.1 Low-Level Pose Network (LPN)
Given a subset of 𝐻 patches that are selected by HSN, let us assume
the first 𝑖 − 1 patches have been packed into a super-patch 𝑃𝑖−1
in the global frame, and 𝑝𝑖 is the geometric domain of the 𝑖-th
patch in the local frame. Given 𝑝𝑖 and 𝑃𝑖−1, the low-level packing
algorithm needs to select the translation 𝑡𝑖 and rotation 𝜃𝑖 for 𝑝𝑖 such
that the packed shape 𝑃𝑖 ≜ [𝑅(𝜃𝑖)𝑝𝑖 + 𝑡𝑖] ∪ 𝑃𝑖−1 is collision-free
with a high packing ratio. Conventional packing algorithms [Guo
et al. 2022] would consider each patch independently and evenly
sample 𝐾 rotations and consider all the possible translations under
each rotation using NFP algorithm, leading to at least O(𝐾𝑁 2)
complexity with 𝑁 being the total number of edges in 𝑝𝑖 and 𝑃𝑖−1,
which is a major bottleneck of packing algorithms. And due to its
myopic nature, the packing ratio is sub-optimal.

To address the above two shortcomings, we propose to model the
packing procedure as a Markov Decision Process (MDP) and train

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

4 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

LPN to maximize the packing ratio via reinforcement learning. Be-
ing aware of not only the current patch but also the future incoming
patches, our LPN policy exhibits a small optimality gap. Briefly, the
MDP is identified with a tuple < 𝑆,𝐴, 𝜏, 𝑟 >, which models the pro-
cedure of a decision-maker iteratively observing the current system
state in the state space 𝑆 and taking an action in the action space 𝐴
to change the environment. The environment would then update
its state via a state transition function 𝜏 and the decision-maker
receives a reward 𝑟 . We refer readers to [Sutton and Barto 2018]
for more details on this model. For the packing problem, however,
the action space could involve all possible patch translations and
rotations, which is notoriously difficult to handle for reinforcement
learning. Instead, we propose to restrict the action space to a small
discrete subset, and then use local optimization to fine-tune the final
pose of each patch.

𝜃𝑖

𝜙𝑖

𝑃𝑖−1

𝑝𝑖

Fig. 3. An illustration of our action
space. Given the already packed patch
𝑃𝑖−1 and the current patch 𝑝𝑖 , our ac-
tion needs to determine the rough ro-
tation 𝜃𝑖 of 𝑝𝑖 from local (dashed) to
global frame, as well as the relative
rotation 𝜙𝑖 with respect to 𝑃𝑖−1.

4.1.1 State Space 𝑆 . During
the 𝑖-th iteration, the LPN ob-
serves the current system state
𝑠𝑖 in the state space 𝑆 . In our
problem, we assume LPN can
observe the current packing
patch 𝑃𝑖−1 and a set of at most
𝐻 future patches to be packed,
i.e., 𝑠𝑖 ≜ (𝑃𝑖−1, 𝑝𝑖 , · · · , 𝑝𝑖+𝐻−1).
This is because future patches
can affect the pose of the cur-
rent patch in order to achieve
joint optimality. Unlike the my-
opic algorithms that consider a
single future patch 𝑝𝑖 , we feed
the entire ordered sequence of
𝐻 future patches to the net-
work. Empirically, we find this
strategy can effectively guide the network to avoid myopic local
minima.
Practically, each patch can be of arbitrary geometric shapes, so

we rasterize each patch in 𝑠𝑖 (including 𝑃𝑖−1) to a 50 × 50 2D image.
For each patch, we move their center-of-mass (COM) to the image
center and encode each patch using a shared Fully Convolutional
Network (FCN) into a 432-dimensional latent code 𝑝𝑖 ≜ FCN(𝑝𝑖),
which is concatenated as 𝑠𝑖 = FCN(𝑠𝑖) for short. Since patches are of
drastically different sizes, we scale all the patches before using the
FCN, such that the area of all the𝐻 patches is equal to 60% of the area
of the 2D image. Note that such global scaling will not change the
packing ratio, so it should not change the optimal packing policy.
When there are not enough patches to fill up the 𝐻 channels of
patches, we feed the FCN with blank images.

4.1.2 Action Space 𝐴. Having observed 𝑠𝑖 , our LPN can be repre-
sented as a policy function 𝑎𝑖 = 𝜋LPN (𝑠𝑖) that maps the state to an
action𝑎𝑖 in the action space𝐴. Unlike prior works for learning-based
regular shape packing [Zhao et al. 2021] or shape ordering [Fang
et al. 2023], the design of action space𝐴 for irregular packing ismuch
more challenging. On the one hand, a valid action space should only
consist of collision-free patch poses, while identifying these actions
can involve extensive collision checks. On the other hand, training

a decision-maker in high-dimensional action spaces can be rather
data-demanding, and a promising subset of actions should be pre-
selected. We tackle these two problems by having the policy 𝜋LPN
to select a rough initial guess and then use local optimization to
revise the pose. Specifically, we re-parameterize the action space 𝐴
under polar coordinates (Fig. 3). We first compute the COMs for 𝑃𝑖−1
and 𝑝𝑖 , denoted as COM(𝑃𝑖−1) and COM(𝑝𝑖). The relative position
COM(𝑝𝑖) with respect to COM(𝑃𝑖−1) is expressed under polar coor-
dinates with relative angle 𝜙𝑖 and we ignore their relative distance.
Similarly, the local-to-global rotation of 𝑝𝑖 is encoded as another
angle 𝜃𝑖 . In summary, we define our action space as: 𝑎𝑖 ≜ (𝜃𝑖 , 𝜙𝑖).
At an early stage of this research, we parameterize our policy to use
this continuous action space. However, in experiments we find the
optimal state-action distribution can be multi-modal, and Gaussian
distributions widely adopted to model the continuous action space
cannot capture the multi-modal nature, leading to inferior perfor-
mances. Therefore, we sample the range of 𝜃𝑖 and 𝜙𝑖 at 16 angles
and consider the 16 × 16 = 256-dimensional discrete action space.

4.1.3 State Transition. Our state transition function 𝑠𝑖+1 = 𝜏 (𝑠𝑖 , 𝑎𝑖)
computes the next state 𝑠𝑖+1 from 𝑠𝑖 and 𝑎𝑖 by converting the action
𝜃𝑖 and 𝜙𝑖 into a collision-free, tightly packed pose. Since we use
a coarse discretization of the action space, we also use the state
transition function to locally revise the action and improve the pack-
ing ratio. To this end, we devise the following collision-constrained
local optimization:

𝜃★𝑖 , 𝑡
★
𝑖 ≜ argmin

𝜃,𝑡

∥𝑅(𝜃)COM(𝑝𝑖) + 𝑡 − COM(𝑃𝑖−1)∥2

s.t. [𝑅(𝜃)𝑝𝑖 + 𝑡] ∩ 𝑃𝑖−1 = ∅,
(1)

where we initialize 𝜃 = 𝜃𝑖 and 𝑡𝑖 is initialized from 𝜙𝑖 by elon-
gating the relative direction (red line in Fig. 3) between 𝑃𝑖 and 𝑝𝑖
until they are collision free. Finally, we update the next state as
𝑠𝑖+1 ≜ ([𝑅(𝜃★𝑖)𝑝𝑖 + 𝑡

★
𝑖
] ∪ 𝑃𝑖−1, 𝑝𝑖+1, · · · , 𝑝𝑖+𝐻). Note that we use

the distance between center-of-mass as a surrogate measure for
the packing ratio. We choose not to use the packing ratio as our
objective function, because the new patch 𝑝𝑖 can oftentimes be en-
tirely contained in the bounding box of 𝑃𝑖−1 and all the poses of 𝑝𝑖
inside the bounding box has the same packing ratio. The collision
constraint can be realized in several ways, including the scaffold
method [Jiang et al. 2017] and the boundary barrier energy [Smith
and Schaefer 2015], and we adopt the latter approach to avoid the
costly 2D re-meshing. Although the scaffold method [Jiang et al.
2017] has better solutions in large-scale problems, the barrier en-
ergy technique performs better under our small problem sizes with
only 3 decision variables. We solve the optimization using Newton’s
method with line-search to guarantee constraint satisfaction. Dur-
ing the line-search, we implement a bounding volume hierarchy to
accelerate the collision check and assembly of barrier energy terms.

4.1.4 LPN Training. We parameterize 𝜋LPN as an MLP mapping
𝑠𝑖 to the Q-value of all 256 actions. After each state transition, the
policy receives a sparse reward signal defined as:

𝑟 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1) = pr(𝑃𝑖)I[𝑖 = 𝐻],

where pr(𝑃) is the packing ratio of super-patch 𝑃 and I[𝑖 = 𝐻] is
an indicator function of the last iteration. Note that using sparse

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

Learning based 2D Irregular Shape Packing • 5

reward signals can significantly slow down policy learning, but such
reward does not pose a major problem in our application as we use a
short horizon𝐻 , i.e. |𝐻 | < 5. We train our LPN policy via Q-learning
algorithm by maximizing the expected cumulative reward:

argmax
𝜋LPN

E𝑎𝑖∼𝜋LPN

[
𝐻∑
𝑖=1

𝑟 (𝑠𝑖 , 𝑎𝑖 , 𝑠𝑖+1)
]
.

To solve the stochastic optimization, we adopt the robust double
deep Q-learning (DDQN) algorithm [Van Hasselt et al. 2016] and
train 𝜋LPN to pack randomly sampled batches of atmost𝐻 patches of
arbitrary order from our patch dataset, and we ensure each sampled
batch comes from the same 3D model.

4.2 Low-Level Sorter Network (LSN)
Our LSN provides the optimal patch ordering for the LPN to achieve
the best packing ratio, as our LPN can only pack the patches in a
given order. We model the patch sorting procedure as another MDP
denoted as < 𝑆,𝐴′, 𝜏 ′, 𝑟 > with the same state space and reward
signal as that of LPN. We represent LSN as another policy function
𝑎′
𝑖
= 𝜋LSN (𝑠𝑖) that selects the next patch to be packed, i.e.,𝑎′𝑖 consists

of the Q-value of the 𝑘 future patches. Given the selected next patch,
the state transition function 𝜏 ′(𝑠𝑖 , 𝑎′𝑖) would invoke LSN and the
state transition function 𝜏 from Sec. 4.1.3 to yield 𝑠𝑖+1.
Neural networks need to understand the relative relationship

between the future patches in order to accomplish the sorting
task. Therefore, we apply a Graph Attention Network (GAT) mod-
ule [Velickovic et al. 2017], which is known to be effective in solving
sorting tasks [Hu et al. 2020; Zhao et al. 2022]. We organize all the
patches into a fully connected graph, where the nodal input of GAT
is the patch’s feature 𝑝𝑖 , along with the feature of the already packed
super-patch 𝑃𝑖−1. GAT outputs the high-level graph feature for each
of the existing patches. Then the patch features are converted to
their corresponding Q-values using an MLP network. This architec-
ture parameterizes our sorting policy, denoted as 𝜋LSN. Similar to
𝜋LPN, 𝜋LSN is trained using DDQN via randomly sampled batches
of at most 𝐻 patches coming from the same 3D model. The LSN and
LPN combined define our low-level function LL(S′).

Algorithm 1 Iterative Selection of Super-Patches

1: S ←non-tiny set
2: Sample 400 subsets S′1,··· ,400
3: Sort S′1,··· ,400 in HSN(S′

𝑖
)-descending order

4: Sort S′1,··· ,10 in pr(S − S′
𝑖
∪ LL(S′

𝑖
))-descending order

5: if pr(S − S′1 ∪ LL(S′1)) > pr(S) then
6: S ← S − S′1 ∪ LL(S′1) , goto Line 2
7: else Return S

4.3 High-Level Group Selector Network (HSN)
Our low-level policies can only sort and pack a small subset S′ of
𝐻 patches. In order to solve practical UV packing problems with
hundreds of patches, we need to iteratively select S′ from S. To this
end, we design a weighted average packing ratio pr(•) to evaluate
the quality of the updated configuration pr(S − S′ ∪ LL(S′)) and

pick S′ corresponding to the highest ratio. We then train our HSN
to rank the quality ofS′ without actually calling the costly low-level
function LL(S′). Finally, we propose a sampling strategy to further
reduce the calls to HSN.

4.3.1 Weighted Average Packing Ratio. In order to compare different
choices of S′, we need a metric that measures their similarity to
rectangles. To this end, we define the area-averaged packing ratio
over all the super-patches in S as follows:

pr(S) ≜
∑
𝑝∈S area(𝑝)pr(𝑝)∑
𝑝∈S |bound(𝑝) |

pr(𝑝) ≜ area(𝑝)
|bound(𝑝) | ,

where area(𝑝) and bound(𝑝) are the actual area and the bounding
box of the super-patch 𝑝 , respectively. We further observe that the
high geometric complexity of the super-patches is due to the interior
gaps between them. However, these interior gaps are useless for
low-level packing policies because, by the design of our low-level
action space of LPN as shown in Fig. 3, we always pack a new patch
𝑝𝑖 from the outside of 𝑃𝑖−1. Therefore, before inserting LL(S′) to S,
we compute the alpha shape [Akkiraju et al. 1995] (Fig. 4) for each
new super-patch to fill up the interior gaps and inform the neural
networks that interior gaps are useless by design.

Fig. 4. After forming a super-patch
(left), we will use alpha shape (right)
to fill the gaps and inform the neural
networks that these gaps are useless.

4.3.2 Packing Ratio Prediction.
Exhaustively evaluating pr(•)
for all𝐶𝐻

|S | choices ofS
′would

require an intensive amount of
calls to the low-level packing
policies as well as the costly op-
timizations (Eq. 1). Instead, we
propose a learning-based tech-
nique to predict the packing ra-
tio using HSN. Given S′, our
HSN uses the same FCN from
the low-level policies to encode
each patch. The latent codes are then brought through GAT to yield
the high-level graph features as in LSN. All the graph features are
then brought through a max-pooling layer and a Sigmoid layer to
yield the predicted packing ratio. Note the absolution values of
packing ratio is less important, since we are only interested in the
relative ordering of the potential super-patches. In view of this, we
train our HSN via supervised metric learning [Chopra et al. 2005].
During each learning iteration, we randomly sample two (at most)
𝐻 -patch groups denoted as S′ and S′′ with groundtruth packing
ratios denoted as pr′ and pr′′ and HSN predicted packing ratio
denoted as HSN(S′) and HSN(S′′). We then update HSN via the
following margin ranking loss:

L = max(0,−sgn(pr′ − pr′′) (HSN(S′) − HSN(S′′)) + 𝜖), (2)

where 𝜖 is the minimal positive margin. We have found that HSN
can empirically reach a high prediction accuracy for simple patches,
but its accuracy gradually deteriorates as more and more patches
are packed into complex-shaped super-patches.

4.3.3 Patch Group Sampling. Even using the HSN to efficiently
rank the packing ratio, batch evaluation of pr(•) for all S′ is still
time-consuming. To further alleviate the runtime cost, we randomly

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

6 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

sample 400 subsets of patches and predict their packing ratio via a
batched HSN evaluation. The top 10 out of 400 best groups are then
forwarded to the low-level algorithm to evaluate the groundtruth
packing ratio pr(S − S′ ∪ LL(S′)), and finally the best of the 10
groups is adopted to form the next super-patch. As outlined in Alg. 1
of the supplementary, this procedure is repeated until the updated
packing ratio pr(S) is not higher than the current value.

4.4 Super-Patch Assembly
After our first stage, the non-tiny patches are grouped into nearly
rectangular super-patches. During our second stage, we confidently
take the rectangular shape assumption and use the divide-and-
conquer algorithm implemented in the Trimesh library [Dawson-
Haggerty et al. 2019] to assemble all the super-patches together.
With the initially packed result from bin-packing, we then pro-

pose to adjust the joint poses of all the patches, locally squeezing
them together via numerical optimization. We denote the bound-
ing box enclosing all the𝑀 patches as bound(𝑝1, · · · , 𝑝𝑀), and our
optimization problem is formulated as:

argmin
𝜃1,··· ,𝑀 ,𝑡1,··· ,𝑀

|bound(𝑝1, · · · , 𝑝𝑀) |

s.t. [𝑅 (𝜃𝑖)𝑝𝑖 + 𝑡𝑖] ∩
[
𝑅 (𝜃 𝑗)𝑝 𝑗 + 𝑡 𝑗

]
= ∅ ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑀.

(3)

We again use the barrier function technique [Smith and Schaefer
2015] to handle all the collision-free guarantees and ensure that the
bounding box is surrounding all the patches. Although this is a joint
optimization, it is still efficient to solve, since we only allow rigid
motions for all the patches.

Finally, there is another set of tiny patches that are set aside by our
filter at the beginning of our pipeline. For these small patches, we
adopt a conventional approach to sort them in an area-descending
order and then use the scanline algorithm [Hu et al. 2018] to fit them
into the gaps and holes of the super-patches. During this stage, we
also replace alpha shapes with the original patches to expose the
scanline algorithm to potentially useful gaps and holes. These final
adjustments are illustrated in Fig. 6.

5 EXPERIMENTS
Network Training. We perform all experiments on a computer

with an Intel E5-1650 12-core CPU at 3.60GHz and 32GB RAM.
We implement all learning algorithms via Pytorch [Paszke et al.
2017] with the GAT implemented based on [Wang et al. 2019]. For
training the LPN, we use DDQN with an experience buffer size of
106 transition tuples. We sample roughly 5 × 106 random packing
problems with 𝐻 = 4 to populate the experience buffer and we
update 𝜋LPN using 2 × 104 epochs of stochastic gradient descend
(SGD). The same procedure is used for training 𝜋LSN. Both learning
rates of the LPN and LSN are set to 10−4. We train HSN using a
collected dataset of 6 × 104 𝐻 -patch subsets with pre-computed
groundtruth packing ratios. We update HSN using 500 epochs of
SGD with a learning rate of 10−3 and a batch size of 256. For each
dataset, we use 70% of data for training and the rest for testing.

Runtime Setting. Given the set of input patches, we first sort them
in the area-descending order, and then consider the subset of largest
patches, whose sum of areas takes up 80% of the area of all patches,
which is denoted as the salient subsetS𝑠 . The average area of patches

in the salient subset is denoted as 𝑎 =
∑
𝑝∈S𝑠 area(𝑝)/|S𝑠 |. Next, we

define the tiny patch set as all the patches with an area smaller than
𝑎/5, with other patches classified as non-tiny. Note that the patches
are splitted based on their relative sizes instead of absolute sizes,
so the final results are insensitive to the threshold values within a
reasonable range. The numerical optimizations in Eq. 1 and Eq. 3 are
implemented in C++, where we set the maximal allowed iterations
and initial step size to 103 and 10−4, respectively. In the super-patch
assembly, the aspect ratio between the width and height of the
texture image domain ranges from 1 to 2. To choose the appropriate
aspect ratio, we run the bin-packing algorithms 10 times using
different aspect ratios and choose the one with the highest packing
ratio. Practical applications would create gutter space around the
boundaries of patches to eliminate interpolation artifacts. In our
implementations we set the minimal distance between patches to
one pixel.

Datasets. We evaluate our method on three datasets of 2D UV
patches obtained from UV unwrapping of 3D models using XAtlas.
This software can sometimes generate degenerate patches with zero
or negative areas, which are removed from our dataset. As illustrated
in Fig. 8, Fig. 7, and Fig. 10, our first dataset, “Building” contains
86 man-made building models with mostly sharp features, where
the resulting packing problems have 5 to 131 patches. Our second
dataset, “Object”, contains 81 3D models representing daily objects
with few sharp features, where the packing problems have 9 to 200
patches. Our third dataset, “General”, contains 221 3D models from
Thingi10k [Zhou and Jacobson 2016], where the packing problems
have 4 to 200 patches. Note that although the size of our datasets is
not comparable to the sizes of datasets commonly used for computer
vision tasks, our learned packing policy demonstrates pretty good
generalization ability, as shown in the results section. This is because
the training is conducted on patch-level instead of model level.
We train our models on randomly sampled patches from these 3D
models, leading to millions of combinatorial packing instances for
training.

Baselines. We identify three baselines to compare against. Our
first baseline is the exact NFP-based packing approach combining
two heuristic methods: maximal packing ratio [Burke et al. 2006]
and lowest gravity center [Liu and He 2006], which is denoted as
NFP-Heuristic. Given a list of patches, NFP-Heuristic first sorts all
patches in the area-descending order and then sequentially packs
each patch. For a new patch, NFP-Heuristic considers its 16 rotations
and computes NFP for each rotation using Minkowski sum [Bennell
and Song 2008] to find collision-free translations. Finally, the pose
leading to the highest packing ratio is selected and, if two poses lead
to the same packing ratio, we select the one with the lower gravity
center position. We compute the NFP using a highly optimized re-
duced convolution algorithm implemented in CGAL [Fabri and Pion
2009]. Our second baseline is the packer algorithm implemented in
the open-source software: XAtlas [Young 2023], which implements
aggressive simplification and acceleration techniques, allowing the
packing algorithm to scale to problems with hundreds or thousands
of patches. For example, it uses voxelized patches instead of piece-
wise linear ones, so that they could use a scanline algorithm instead
of exact NFP computation. Our third baseline re-implements [Sander

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

Learning based 2D Irregular Shape Packing • 7

et al. 2003] using Python. The major difference between XAtlas and
[Sander et al. 2003] lies in their heuristics, where XAtlas maximizes
packing ratio and Sander et al. [2003] minimizes wasted area.

Results. For each dataset, we first profile the packing ratio of all
the algorithms on the testing problems. As summarized in Tab. 1
(Ours), our algorithm consistently outperforms the other baselines
by 5% − 10%. To further justify the generality of our method, we
train our networks on the General dataset (Ours†) but test it on the
other two datasets. In this case, our method suffers from a marginal
loss in packing ratio, but still outperforms all the baselines. This
result justifies that our method has a reasonable ability of domain
transfer and can be ported to pack patches for different classes of
3D models in a zero-shot fashion. More results of our method are
visualized in App. C.

Ablation Study. We further analyze aspects of our learning-assisted
technique. First, we profile the accuracy of HSN, which is measured
by the fraction of patch pairs that are correctly ranked. Our HSN
achieves an accuracy of 90.8%, 86.9%, and 84.6% on the Building,
Object, and General test sets, respectively. Our trained HSN achieves
a high ranking accuracy for the Building dataset and the accuracy
degrades for the Object and General datasets, in which the patch
shapes are more complex than those in the Building dataset. Next,
we highlight the packing ratio of our low-level 𝜋LPN and 𝜋LSN alone.
To this end, we sample a random subset of 𝐻 patches and use our
LL to perform packing. We compare LL with the baselines and sum-
marize the results averaged over 2500 random problems in Tab. 2. It
is shown that our DRL-based packing policy still outperforms other
baselines for smaller packing problems with 𝐻 patches, which vali-
dates the necessity of using a learned packing policy as the low-level
packer. Next, we compare the packing ratio of LL under different
horizons 𝐻 . We train four low-level algorithms with 𝐻 = 2, · · · , 5
and our resulting packing ratios over the 2500 random problems
are show in Tab. 3. Our approach performs the worst when 𝐻 = 2,
where our low-level policies become myopic, but the quality varies
only slightly when 𝐻 ≥ 2. Therefore, we choose 𝐻 = 4 for the
highest quality.
Finally, to validate the design choices of our pipeline, we ana-

lyze several variants of our method. The corresponding results are
summarized in Tab. 4. In LPN+LSN, we remove our hierarchical
grouping procedure, and train LPN and LSN with a larger hori-
zon 𝐻 = 10 to directly pack a sequence of patches sorted in area-
descending order. In NFP+HSN, we replace LL(•) with NFP and
area-descending ordering, but still use our HSN for hierarchical
grouping. In LPN(c)+LSN+HSN, we train the LPN using continu-
ous action space, where we adopt PPO algorithm [Schulman et al.
2017] to optimize the policy. The learning process of LSN and HSN
remains the same as our method. In LPN+LSN+HSN, we use our
low- and high-level algorithms but without hole-filling, i.e., we
consider all the patches in the high-level algorithm and do not
filter out tiny patches. As shown in Tab. 4, LSN+LPN performs ex-
tremely poorly. We find that the policy learned with large horizons
fails to converge due to the huge search space and extremely high
complexity involved in irregular shape packing problems, which
validates the necessity of our hierarchical grouping procedure. We

can see that LPN(c)+LSN+HSN leads to better performances than
NFP+HSN, verifying the effectiveness of our learning-based packing
policy. By the packing ratio comparisons among LPN(c)+LSN+HSN,
LPN+LSN+HSN, and ours, we justify the necessity of a discrete
action space and the hole-filling strategy.

Computational Cost. Although our method achieves better pack-
ing ratios, our computational efficacy is inferior to XAtlas, due to the
repeated network evaluation. For the general dataset, the average
packing time of XAtlas [Young 2023], [Sander et al. 2003], NFP, and
our method are 1.81𝑠 , 33.52𝑠 , 93.62𝑠 , and 37.76𝑠 , respectively. The
performance breakdown for our packing method on the general
dataset is summarized in Tab. 5. It is shown that the computational
bottleneck lies in the scanline-based hole filling, which involves
nested for loops and is implemented in Python. Our method can
be accelerated if we switch to a scanline algorithm implemented
in native-C++. We further study the scalability of our method in
dealing with large UV packing problems. To this end, we combine
patches from several 3D models and use each algorithm to pack
all the patches into a single texture. We create a dataset including
packing instances with 50, 100, 150, 200, 250, 300 patches, on which
we run our method and other baselines. The computational over-
head is plotted against the number of patches in Fig. 5. The cost of
NFP is much higher than other algorithms due to the superlinear
increase of computational complexity in computing the Minkowski
sum. By design of our high-level selection policy, our method scales
linearly against the number of patches, although our method is
slower than XAtlas. In Fig. 9, we show an example in which 784
charts segmented from 6 animal chesses are packed into a single
Atlas. The packing time of [Sander et al. 2003], XAtlas, NFP and
our method are 180.68𝑠 , 4.68𝑠 , 2966.63𝑠 and 278.87𝑠 , respectively.
Our method achieves better packing ratio than NFP while requiring
significantly fewer computational resources.

User-controlled Aspect Ratio. By default, we search for the opti-
mal aspect ratio of the texture image that maximizes the packing
ratio. However, our method can be easily adapted to support a
user-specified packing ratio, by forwarding it to the bin-packing
procedure. To compare our method with XAtlas, we conduct ex-
periments where we specify the aspect ratio of 1. The results of
these experiments are also summarized in Tab. 1 (Ours★), where
our approach still generates the best results compared to baselines,
although with an expected degradation compared to our results with
the default setting. Fig. 11 visualizes some of the packing results
with fixed and adjustable aspect ratios.

6 CONCLUSIONS AND FUTURE WORK
We present a learning-assisted irregular shape packing algorithm
for UV patches. On three datasets with various topology and geom-
etry properties, we achieve 5% − 10% packing ratio improvement
over XAtlas, NFP, and [Sander et al. 2003] baseline algorithms. Our
algorithm can deal with problem instances with up to hundreds of
patches within tolerable computational overhead for offline pack-
ing. By optimizing only the rigid transformations for the patches,

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

8 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

Table 1. (Min|Max|Avg) packing ratios of all algorithms on the test datasets; Ours★ means our algorithm run with a fixed aspect ratio of 1; † means our
algorithm trained on the general dataset.

Test-set [Sander et al. 2003] XAtlas NFP Ours Ours★ Our†
Building 0.470|0.830|0.675 0.525|0.835|0.670 0.499|0.907|0.707 0.683|0.980|0.827 0.683|0.980|0.801 0.683|0.980|0.805
Object 0.290|0.733|0.609 0.385|0.788|0.588 0.439|0.805|0.630 0.377|0.862|0.687 0.377|0.843|0.680 0.377|0.862|0.682
General 0.455|0.883|0.652 0.449|0.886|0.688 0.405|0.886|0.690 0.540|0.937|0.776 0.509|0.937|0.757 -

Table 2. Average packing ratio over 2500 random problems with𝐻 patches.

[Sander et al. 2003] XAtlas NFP Ours (LL)

pr 0.618 0.651 0.582 0.686

Table 3. Packing ratio comparison with different H.

H = 2 H = 3 H = 4 H = 5

pr 0.741 0.771 0.776 0.770

Table 4. Packing ratio comparison of algorithm variants on General dataset.

Methods pr
LSN + LPN 0.448
NFP 0.690
NFP + HSN 0.700
LPN(c) + LSN + HSN 0.725
LPN + LSN + HSN 0.744
Ours 0.776

Table 5. The performance breakdown for packing one patch on average.

Procedure Cost(%)

HSN Evaluation (Sec. 4.3) 10.1%
LPN+LSN Evaluation (Sec. 4.1,4.2) 18.4%
Bin-packing (Sec. 4.4) 3.9%
Joint optimization (Eq. 3) 12.9%
Scanline-based hole filling 52.9%

our approach respects the input UV patch shapes and parameteri-
zations, which can be immediately incorporated into existing UV
unwrapping pipelines.
Our method leads to several noteworthy future directions. First,

although our method achieves averaged best performance, there can
be sub-optimal solution instances as illustrated in Fig. 12. Second,
our action space does not inherently allow patches to be put into
gaps between other patches, which requires a more flexible action
space design. Next, our existing hierarchical grouping approach,
while efficient, operates in a greedy manner and may be confined
to local optima. An alternative solution is to reframe the grouping
process as a sequential decision-making problem that can be solved
by advanced policy optimization algorithms. Finally, we are also
looking into more efficient policy parameterizing utilizing diffusion
models and transformers.

50 100 150 200 250 300
patches

0

200

400

600

800

1000

W
al

l-c
lo

ck
 ti

m
e

(s
)

[Sander et.al. 2003]
XAtlas
NFP
Ours

Fig. 5. The average packing time of various algorithms plotted against the
number of patches.

A
fte

rF
irs

tS
ta
ge

A
fte

rJ
oi
nt

O
pt
.

N
o-
fil
te
rin

g
ba
se
lin

e
pr
:7
1.
9%

A
fte

rH
ol
e-
fil
lin

g
pr
:7
6.
5%

Fig. 6. After the first stage, there are gaps between non-tiny patches (top
left). We perform a joint optimization to squeeze patches and remove gaps
(top right). After hole-filing, we achieve a packing ratio of 76.5% (bottom
right). If we do not filter out the tiny patches and forward all patches to
HSN, we can only achieve a ratio of 71.9% (bottom left).

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-
structive suggestions and feedback. We also thank Yujie Wang for

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

Learning based 2D Irregular Shape Packing • 9

[Sander et al. 2003] XAtlas NFP Ours

pr: 69.5% pr: 70.1% pr: 74.5% pr: 82.4%

pr: 68.9% pr: 65.4% pr: 64.7% pr: 77.2%

pr: 67.0% pr: 67.9% pr: 69.0% pr: 76.8%

Fig. 7. Three packing instances from the building, object and general dataset.

Building Object General

Fig. 8. A set of 3D model samples from our three datasets.

her valuable discussions and help. Her expertise in solving NP-hard
problems using deep neural networks has been instrumental in shap-
ing the direction of this paper, allowing us to refine our methods
and focus our efforts in the most promising directions. Additionally,
Manyi Li is supported by the Excellent Young Scientists Fund Pro-
gram (Overseas) of Shandong Province (Grant No.2023HWYQ-034).

REFERENCES
Nataraj Akkiraju, Herbert Edelsbrunner, Michael Facello, Ping Fu, EP Mucke, and

Carlos Varela. 1995. Alpha shapes: definition and software. In Proceedings of the 1st
international computational geometry software workshop, Vol. 63.

Marco Attene. 2015. Shapes in a box: Disassembling 3D objects for efficient packing
and fabrication. In Computer Graphics Forum, Vol. 34. Wiley Online Library, 64–76.

Nikhil Bansal, Jos R. Correa, Claire Kenyon, and Maxim Sviridenko. 2006. Bin Packing
in Multiple Dimensions: Inapproximability Results and Approximation Schemes.
Math. Oper. Res. 31, 1 (feb 2006), 31–49. https://doi.org/10.1287/moor.1050.0168

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2021. Machine learning for com-
binatorial optimization: a methodological tour d’horizon. European Journal of
Operational Research 290, 2 (2021), 405–421.

Julia A Bennell and Xiang Song. 2008. A comprehensive and robust procedure for
obtaining the nofit polygon usingMinkowski sums. Computers &Operations Research
35, 1 (2008), 267–281.

Edmund Burke, Robert Hellier, Graham Kendall, and Glenn Whitwell. 2006. A new
bottom-left-fill heuristic algorithm for the two-dimensional irregular packing prob-
lem. Operations Research 54, 3 (2006), 587–601.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

https://doi.org/10.1287/moor.1050.0168

10 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

[Sander et al. 2003] XAtlas NFP Ours

pr: 59.6% pr: 67.4% pr: 72.3% pr: 75.9%

Fig. 9. A large problem instance with 784 charts.

[Sander et al. 2003] XAtlas NFP Ours

pr: 59.2% pr: 66.4% pr: 53.0% pr: 73.7%

pr: 66.9% pr: 63.9% pr: 59.2% pr: 74.6%

pr: 54.8% pr: 54.2% pr: 55.5% pr: 62.1%

Fig. 10. Three packing instances from the building, object, and general dataset.

Lei Cheng, Liang Deng, and Martin DF Wong. 2005. Floorplanning for 3-D VLSI design.
In Proceedings of the 2005 Asia and South Pacific Design Automation Conference.
405–411.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005. Learning a similarity metric
discriminatively, with application to face verification. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), Vol. 1. IEEE,
539–546.

Teodor Gabriel Crainic, Guido Perboli, and Roberto Tadei. 2009. TS2PACK: A two-level
tabu search for the three-dimensional bin packing problem. European Journal of
Operational Research 195, 3 (2009), 744–760.

Dawson-Haggerty et al. 2019. trimesh. https://trimsh.org/
Andreas Fabri and Sylvain Pion. 2009. CGAL: The computational geometry algorithms

library. In Proceedings of the 17th ACM SIGSPATIAL international conference on

advances in geographic information systems. 538–539.
Jie Fang, Yunqing Rao, Xusheng Zhao, and Bing Du. 2023. A Hybrid Reinforcement

Learning Algorithm for 2D Irregular Packing Problems. Mathematics 11, 2 (2023),
327.

A Miguel Gomes and José F Oliveira. 2006. Solving irregular strip packing problems
by hybridising simulated annealing and linear programming. European Journal of
Operational Research 171, 3 (2006), 811–829.

Ankit Goyal and Jia Deng. 2020. Packit: A virtual environment for geometric planning.
In International Conference on Machine Learning. PMLR, 3700–3710.

Baosu Guo, Yu Zhang, Jingwen Hu, Jinrui Li, Fenghe Wu, Qingjin Peng, and Quan
Zhang. 2022. Two-dimensional irregular packing problems: A review. Frontiers in
Mechanical Engineering 8 (2022). https://doi.org/10.3389/fmech.2022.966691

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

https://trimsh.org/
https://doi.org/10.3389/fmech.2022.966691

Learning based 2D Irregular Shape Packing • 11
U
nfi

xe
d
as
pe
ct
ra
tio

s

pr: 63.7% pr: 77.0% pr: 67.2% pr: 69.7%

Fi
xe
d
as
pe
ct
ra
tio

s

pr: 62.1% pr: 76.0% pr: 66.3% pr: 69.7%

Fig. 11. Packing results with and without fixed aspect ratios.

XAtlas Ours

pr: 64.0% pr: 63.7%

pr: 66.9% pr: 64.9%

Fig. 12. Sub-optimal packing instances generated by our pipeline.

Juris Hartmanis. 1982. Computers and intractability: a guide to the theory of np-
completeness (michael r. garey and david s. johnson). Siam Review 24, 1 (1982),
90.

Ruizhen Hu, Juzhan Xu, Bin Chen, Minglun Gong, Hao Zhang, and Hui Huang. 2020.
Tap-net: transport-and-pack using reinforcement learning. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–15.

Yannan Hu, Sho Fukatsu, Hideki Hashimoto, Shinji Imahori, and Mutsunori Yagiura.
2018. Efficient overlap detection and construction algorithms for the bitmap shape
packing problem. Journal of the Operations Research Society of Japan 61, 1 (2018),
132–150.

Yuan Jiang, Zhiguang Cao, and Jie Zhang. 2021. Learning to solve 3-D bin packing prob-
lem via deep reinforcement learning and constraint programming. IEEE transactions
on cybernetics (2021).

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Transactions on Graphics 36, 6
(2017).

Qingdi Ke, Peng Zhang, Lei Zhang, and Shouxu Song. 2020. Electric vehicle battery
disassembly sequence planning based on frame-subgroup structure combined with
genetic algorithm. Frontiers in Mechanical Engineering 6 (2020), 576642.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least squares
conformal maps for automatic texture atlas generation. ACM transactions on graphics
(TOG) 21, 3 (2002), 362–371.

Max Limper, Nicholas Vining, and Alla Sheffer. 2018. Box cutter: atlas refinement for
efficient packing via void elimination. ACM Trans. Graph. 37, 4 (2018), 153–1.

Hao-Yu Liu, Xiao-Ming Fu, Chunyang Ye, Shuangming Chai, and Ligang Liu. 2019.
Atlas Refinement with Bounded Packing Efficiency. ACM Transactions on Graphics
(SIGGRAPH) 38, 4 (2019), 33:1–33:13.

Hu-yao Liu and Yuan-jun He. 2006. Algorithm for 2D irregular-shaped nesting problem
based on the NFP algorithm and lowest-gravity-center principle. Journal of Zhejiang
University-Science A 7, 4 (2006), 570–576.

Tobias Nöll and D Strieker. 2011. Efficient packing of arbitrary shaped charts for
automatic texture atlas generation. In Computer Graphics Forum, Vol. 30. Wiley
Online Library, 1309–1317.

Semih Önüt, Umut R Tuzkaya, and Bilgehan Doğaç. 2008. A particle swarm optimization
algorithm for the multiple-level warehouse layout design problem. Computers &
Industrial Engineering 54, 4 (2008), 783–799.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in pytorch. (2017).

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung.
2017. Autocuts: simultaneous distortion and cut optimization for UV mapping. ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable locally injective mappings. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1.

María Cristina Riff, Xavier Bonnaire, and Bertrand Neveu. 2009. A revision of recent
approaches for two-dimensional strip-packing problems. Engineering Applications
of Artificial Intelligence 22, 4-5 (2009), 823–827.

Pedro V Sander, John Snyder, Steven J Gortler, and Hugues Hoppe. 2001. Texture map-
ping progressive meshes. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. 409–416.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

12 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

Pedro V Sander, Zoë J Wood, Steven Gortler, John Snyder, and Hugues Hoppe. 2003.
Multi-chart geometry images. (2003).

Nico Schertler, Daniele Panozzo, Stefan Gumhold, and Marco Tarini. 2018. Generalized
motorcycle graphs for imperfect quad-dominant meshes. ACM Transactions on
Graphics 37, 4 (2018).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–9.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion piecewise mesh parameterization. In IEEE Visualization, 2002. VIS 2002.
IEEE, 355–362.

Marc Soucy, Guy Godin, and Marc Rioux. 1996. A texture-mapping approach for the
compression of colored 3D triangulations. The Visual Computer 12 (1996), 503–514.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction.
MIT press.

Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learning
with double q-learning. Proceedings of the AAAI Conference on Artificial Intelligence
30, 1 (2016).

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
Yoshua Bengio, et al. 2017. Graph attention networks. stat 1050, 20 (2017), 10–48550.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao
Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and
Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-Performant
Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315 (2019).

Shiyi Wang, Jiong Chen, Xifeng Gao, Hujun Bao, and Jin Huang. 2022. 3D mesh cutting
for high quality atlas packing. Computer Aided Geometric Design 99 (2022), 102149.

Shuo Yang, Shuai Song, Shilei Chu, Ran Song, Jiyu Cheng, Yibin Li, and Wei Zhang.
2023. Heuristics Integrated Deep Reinforcement Learning for Online 3D Bin Packing.
IEEE Transactions on Automation Science and Engineering 0, 0 (2023), 1–12. https:
//doi.org/10.1109/TASE.2023.3235742

Jonathan Young. 2023. Xatlas. Retrieved May, 2023 from https://github.com/jpcy/xatlas
Chi Zhang, Mao-Feng Xu, Shuangming Chai, and Xiao-Ming Fu. 2020. Robust atlas

generation via angle-based segmentation. Computer Aided Geometric Design 79
(2020), 101854.

Hang Zhao, Yang Yu, and Kai Xu. 2021. Learning efficient online 3d bin packing on
packing configuration trees. In International Conference on Learning Representations.
0–0.

Hang Zhao, Chenyang Zhu, Xin Xu, Hui Huang, and Kai Xu. 2022. Learning practically
feasible policies for online 3D bin packing. Science China Information Sciences 65, 1
(2022), 112105.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models.

A NETWORK ARCHITECTURE
We summarized the detailed architecture of our three network
in Tab. 7, Tab. 8, and Tab. 9. The full network pipeline of LPN is
defined as:

(𝑃𝑖−1, 𝑝𝑖 , · · · , 𝑝𝑖+𝐻−1)
≜𝑠𝑖

←(FCN(𝑃𝑖−1), FCN(𝑝𝑖), · · · , FCN(𝑝𝑖+𝐻−1))
≜FCN(𝑠𝑖)

Q256 ←𝜋LPN (𝑠𝑖),
where the output is 256-dimensional Q-values over the action space.
The full network pipeline of LSN is defined as:

𝑠𝑖 ←FCN(𝑠𝑖)

(Q𝑝𝑖
, · · · ,Q𝑝𝑖+𝐻−1) ←𝜋

LSN
[(
𝑃𝑖−1
𝑝𝑖

)
, · · · ,

(
𝑃𝑖−1
𝑝𝑖+𝐻−1

)]
,

where the output is the 𝐻 -dimensional Q-value of each candidate
next patch. Finally, the full network pipeline of HSN is defined as:

pr(S′) ←HSN(𝑝1, · · · , 𝑝𝐻),
which outputs the predicted weighted average packing ratio.

Table 6. The architecture of FCN.

Layer Type Input Size Output Size
Convolution (batch size, 1, 50, 50) (batch size, 6, 24, 24)

ReLU (batch size, 6, 24, 24) (batch size, 6, 24, 24)
Convolution (batch size, 6, 24, 24) (batch size, 12, 12, 12)

ReLU (batch size, 12, 12, 12) (batch size, 12, 12, 12)
Convolution (batch size, 12, 12, 12) (batch size, 12, 6, 6)

ReLU (batch size, 12, 6, 6) (batch size, 12, 6, 6)
Flatten (batch size, 12, 6, 6) (batch size, 432)

Table 7. The architecture of LPN.

Layer Type Input Size Output Size
Linear (batch size, 432 × (1 + H)) (batch size, 1024)
ReLU (batch size, 1024) (batch size, 1024)
Linear (batch size, 1024) (batch size, 512)
ReLU (batch size, 512) (batch size, 512)
Linear (batch size, 512) (batch size, 256)
ReLU (batch size, 256) (batch size, 256)
Linear (batch size, 256) (batch size, 256)

Table 8. The architecture of LSN.

Layer Type Input Size Output Size
GAT (batch size, H, 432 × 2) (batch size, H, 512)
ELU (batch size, H, 512) (batch size, H, 512)
GAT (batch size, H, 512) (batch size, H, 256)
ELU (batch size, H, 256) (batch size, H, 256)
Linear (batch size, H, 256) (batch size, H, 128)
ReLU (batch size, H, 128) (batch size, H, 128)
Linear (batch size, H, 128) (batch size, H, 64)
ReLU (batch size, H, 64) (batch size, H, 64)
Linear (batch size, H, 64) (batch size, H, 32)
ReLU (batch size, H, 32) (batch size, H, 32)
Linear (batch size, H, 32) (batch size, H, 1)

Table 9. The architecture of HSN.

Layer Type Input Size Output Size
GAT (batch size, H, 432) (batch size, H, 256)
ELU (batch size, H, 256) (batch size, H, 256)
GAT (batch size, H, 256) (batch size, H, 64)
ELU (batch size, H, 64) (batch size, H, 64)

Max Pooling (batch size, H, 64) (batch size, 64)
ReLU (batch size, 64) (batch size, 32)
Linear (batch size, 32) (batch size, 1)
Sigmoid (batch size, 1) (batch size, 1)

B ALGORITHM PIPELINE
We summarize our training procedure in Alg. 2 and runtime pipeline
in Alg. 3.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

https://doi.org/10.1109/TASE.2023.3235742
https://doi.org/10.1109/TASE.2023.3235742
https://github.com/jpcy/xatlas

Learning based 2D Irregular Shape Packing • 13

Algorithm 2 Training 𝜋LPN, 𝜋LSN, and HSN

Input: A dataset of packing problems S = {S1,S2, · · · }
Output: 𝜋LPN, 𝜋LSN, HSN
1: ⊲ Initial training
2: while not converged do
3: Sample S ∈ S
4: Sample ordered subset of 𝐻 patches S′ ⊆ S
5: Use MDP of Sec. 4.1 to populate experience buffer
6: Update 𝜋LPN via DDQN
7: while not converged do
8: Sample S ∈ S
9: Sample unordered subset of 𝐻 patches S′ ⊆ S
10: Use MDP of Sec. 4.2 and 𝜋LPN to populate experience buffer
11: Update 𝜋LSN via DDQN
12: while not converged do
13: Sample S ∈ S
14: Sample two unordered subsets of 𝐻 patches S′,S′′ ⊆ S
15: Use 𝜋LPN and 𝜋LSN to compute groundtruth pr′ and pr′′
16: Update HSN using SGD on loss Eq. 2

Algorithm 3 Learning-Assisted UV Packing

Input: A packing problem S
Output: Pose for each 𝑝𝑖 ∈ S
1: ⊲ Exclude small patches
2: S/ ← ∅
3: Calculate average area of salient patches 𝑎
4: for 𝑝 ∈ S do
5: if area(𝑝) < 𝑎/5 then
6: S ← S − {𝑝}
7: S/ ← S/ ∪ {𝑝}
8: ⊲ Main loop
9: Compute pr(S)
10: while not converged do
11: Sample 400 random subsets of 𝐻 patches S′1, · · · ,400
12: Sort S′

𝑖
in HSN(S′

𝑖
)-descending order

13: for 𝑖 = 1, · · · , 10 do
14: Compute groundtruth pr𝑖 ← pr(S − S′

𝑖
∪ {LL(S′

𝑖
)})

15: Sort S′1, · · · ,S
′
10 in pr𝑖 -descending order

16: if pr1 > pr(S) then
17: Compute alpha shape for LL(S′1)
18: S ← S − S′1 ∪ {LL(S

′
1)}

19: pr(S) ← pr1
20: else Break
21: Bin-packing all patches in S
22: Locally squeeze patches via Eq. 3
23: ⊲ Pack small patches
24: for 𝑝 ∈ S/ in area-descending order do
25: S ← scanline(S, 𝑝)
26: Return all poses

C MORE RESULTS
We show more results packed by various baselines.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

14 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

[Sander et al. 2003] XAtlas NFP Ours

pr: 59.2% pr: 56.7% pr: 64.8% pr: 76.9%

pr: 63.4% pr: 62.9% pr: 65.5% pr: 76.8%

pr: 57.7% pr: 55.0% pr: 50.3% pr: 65.4%

pr: 61.3% pr: 63.7% pr: 63.0% pr: 72.6%

pr: 67.6% pr: 70.5% pr: 68.4% pr: 75.7%

pr: 74.5% pr: 72.2% pr: 73.8% pr: 80.0%

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

Learning based 2D Irregular Shape Packing • 15

[Sander et al. 2003] XAtlas NFP Ours

pr: 72.5% pr: 63.2% pr: 70.8% pr: 79.7%

pr: 68.0% pr: 64.7% pr: 64.2% pr: 74.3%

pr: 65.3% pr: 62.9% pr: 67.2% pr: 78.3%

pr: 64.8% pr: 63.7% pr: 66.5% pr: 73.9%

pr: 64.8% pr: 63.7% pr: 66.5% pr: 74.9%

pr: 66.8% pr: 66.1% pr: 64.6% pr: 76.1%

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

16 • Zeshi Yang, Zherong Pan, Manyi Li, Kui Wu, and Xifeng Gao

[Sander et al. 2003] XAtlas NFP Ours

pr: 63.9% pr: 64.0% pr: 67.5% pr: 73.5%

pr: 58.2% pr: 64.9% pr: 65.7% pr: 71.7%

pr: 71.7% pr: 73.4% pr: 69.0% pr: 79.3%

pr: 67.2% pr: 69.7% pr: 62.5% pr: 77.5%

pr: 67.7% pr: 70.7% pr: 65.6% pr: 75.9%

pr: 67.0% pr: 70.3% pr: 68.9% pr: 79.6%

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.

	Abstract
	1 Introduction
	2 Related Work
	2.1 UV-atlas Generation
	2.2 General Irregular Shape Packing
	2.3 Learned Packing Policy

	3 Overview
	4 Near Rectangular Patch Generation
	4.1 Low-Level Pose Network (LPN)
	4.2 Low-Level Sorter Network (LSN)
	4.3 High-Level Group Selector Network (HSN)
	4.4 Super-Patch Assembly

	5 Experiments
	6 Conclusions and Future Work
	Acknowledgments
	References
	A Network Architecture
	B Algorithm Pipeline
	C More Results

